Advertisements
Advertisements
प्रश्न
A and B take turns in throwing two dice, the first to throw 10 being awarded the prize, show that if A has the first throw, their chance of winning are in the ratio 12 : 11.
उत्तर
\[\text{ There are only three possible cases, wherein the sum of the numbers obtained after throwing 2 dice is 10, i.e. } \left[ \left( 4, 6 \right) \left( 5, 5 \right) \left( 6, 4 \right) \right].\]
\[ \therefore P\left( \text{ sum of the numbers is 10 } \right) = \frac{3}{36} = \frac{1}{12}\]
\[P\left( \text{ sum of the numbers is not 10 } \right) = 1 - \frac{1}{12} = \frac{11}{12}\]
\[P\left( \text{ any numner other than six } \right) = \frac{5}{6}\]
\[P\left(\text{ A winning } \right) = P\left( 10 \text{ in first throw } \right) + P\left( \text{ 10 in third throw } \right) + . . . \]
\[ = \frac{1}{12} + \frac{11}{12} \times \frac{11}{12} \times \frac{1}{12} + . . . \]
\[ = \frac{1}{12}\left[ 1 + \left( \frac{11}{12} \right)^2 + \left( \frac{11}{12} \right)^4 + . . . \right]\]
\[ = \frac{1}{12}\left[ \frac{1}{1 - \frac{121}{144}} \right] \left[ {1+a+a}^2 {+a}^3 + . . . =\frac{1}{1 - a} \right]\]
\[ = \frac{1}{12} \times \frac{144}{23}\]
\[ = \frac{12}{23}\]
\[P\left( \text{ B winning } \right) = 1 - P\left( \text{ A winning } \right) = \frac{11}{23}\]
\[\text{ Now } , \]
\[\frac{P\left(\text{ A winning } \right)}{P\left( \text{ B winning } \right)} = \frac{\frac{12}{23}}{\frac{11}{23}} = \frac{12}{11}\]
\[\text{ Hence proved.} \]
APPEARS IN
संबंधित प्रश्न
A and B throw a die alternatively till one of them gets a number greater than four and wins the game. If A starts the game, what is the probability of B winning?
How many times must a fair coin be tossed so that the probability of getting at least one head is more than 80%?
Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.
A couple has two children. Find the probability that both the children are (i) males, if it is known that at least one of the children is male. (ii) females, if it is known that the elder child is a female.
Find the chance of drawing 2 white balls in succession from a bag containing 5 red and 7 white balls, the ball first drawn not being replaced.
A bag contains 5 white, 7 red and 3 black balls. If three balls are drawn one by one without replacement, find the probability that none is red.
A box of oranges is inspected by examining three randomly selected oranges drawn without replacement. If all the three oranges are good, the box is approved for sale otherwise it is rejected. Find the probability that a box containing 15 oranges out of which 12 are good and 3 are bad ones will be approved for sale.
If A and B are two events such that P (A ∩ B) = 0.32 and P (B) = 0.5, find P (A/B).
If A and B are two events such that \[ P\left( A \right) = \frac{1}{3}, P\left( B \right) = \frac{1}{4} \text{ and } P\left( A \cup B \right) = \frac{5}{12}, \text{ then find } P\left( A|B \right) \text{ and } P\left( B|A \right) . \]
Two coins are tossed once. Find P (A/B) in each of the following:
A = Tail appears on one coin, B = One coin shows head.
A pair of dice is thrown. Find the probability of getting 7 as the sum, if it is known that the second die always exhibits an odd number.
A pair of dice is thrown. Let E be the event that the sum is greater than or equal to 10 and F be the event "5 appears on the first-die". Find P (E/F). If F is the event "5 appears on at least one die", find P (E/F).
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, then what is the constitutional probability that both are girls? Given that
(i) the youngest is a girl (b) at least one is a girl.
A card is drawn from a pack of 52 cards so the teach card is equally likely to be selected. In which of the following cases are the events A and B independent?
A = The card drawn is a king or queen, B = the card drawn is a queen or jack.
A coin is tossed three times. Let the events A, B and C be defined as follows:
A = first toss is head, B = second toss is head, and C = exactly two heads are tossed in a row. C and A
Given two independent events A and B such that P (A) = 0.3 and P (B) = `0.6. Find P (A ∩ overlineB ) `.
Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A/B) .
A bag contains 3 red and 2 black balls. One ball is drawn from it at random. Its colour is noted and then it is put back in the bag. A second draw is made and the same procedure is repeated. Find the probability of drawing (i) two red balls, (ii) two black balls, (iii) first red and second black ball.
A die is thrown thrice. Find the probability of getting an odd number at least once.
Two cards are drawn successively without replacement from a well-shuffled deck of 52 cards. Find the probability of exactly one ace.
In a family, the husband tells a lie in 30% cases and the wife in 35% cases. Find the probability that both contradict each other on the same fact.
A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that both of them will be selected ?
A, B, and C are independent witness of an event which is known to have occurred. Aspeaks the truth three times out of four, B four times out of five and C five times out of six. What is the probability that the occurrence will be reported truthfully by majority of three witnesses?
A bag contains 4 white, 7 black and 5 red balls. 4 balls are drawn with replacement. What is the probability that at least two are white?
A can hit a target 3 times in 6 shots, B : 2 times in 6 shots and C : 4 times in 4 shots. They fix a volley. What is the probability that at least 2 shots hit?
A purse contains 2 silver and 4 copper coins. A second purse contains 4 silver and 3 copper coins. If a coin is pulled at random from one of the two purses, what is the probability that it is a silver coin?
A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.
One bag contains 4 white and 5 black balls. Another bag contains 6 white and 7 black balls. A ball is transferred from first bag to the second bag and then a ball is drawn from the second bag. Find the probability that the ball drawn is white.
A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.
When three dice are thrown, write the probability of getting 4 or 5 on each of the dice simultaneously.
A ordinary cube has four plane faces, one face marked 2 and another face marked 3, find the probability of getting a total of 7 in 5 throws.
If A, B, C are mutually exclusive and exhaustive events associated to a random experiment, then write the value of P (A) + P (B) + P (C).
A box contains 6 nails and 10 nuts. Half of the nails and half of the nuts are rusted. If one item is chosen at random, the probability that it is rusted or is a nail is
A bag contains 5 brown and 4 white socks. A man pulls out two socks. The probability that these are of the same colour is
Mark the correct alternative in the following question:
\[\text{ If A and B are two independent events such that} P\left( A \right) = 0 . 3 \text{ and } P\left( A \cup B \right) = 0 . 5, \text{ then } P\left( A|B \right) - P\left( B|A \right) = \]
A and B are two students. Their chances of solving a problem correctly are `1/3` and `1/4` respectively. If the probability of their making common error is `1/20` and they obtain the same answer, then the probability of their answer to be correct is
A, B and C throw a pair of dice in that order alternatively till one of them gets a total of 9 and wins the game. Find their respective probabilities of winning, if A starts first.
Out of 8 outstanding students of a school, in which there are 3 boys and 5 girls, a team of 4 students is to be selected for a quiz competition. Find the probability that 2 boys and 2 girls are selected.