हिंदी

Bag a Contains 3 Red and 5 Black Balls, While Bag B Contains 4 Red and 4 Black Balls. Two Balls Are Transferred at Random from Bag a to Bag B and Then a Ball is Drawn from Bag B at Random. - Mathematics

Advertisements
Advertisements

प्रश्न

Bag A contains 3 red and 5 black balls, while bag B contains 4 red and 4 black balls. Two balls are transferred at random from bag A to bag B and then a ball is drawn from bag B at random. If the ball drawn from bag B is found to be red find the probability that two red balls were transferred from A to B.

उत्तर

It is given that bag A contains 3 red and 5 black balls and bag B contains 4 red and 4 black balls.
Let E1E2E3 and A be the events as defined below:
E1 : Two red balls are transferred from bag A to bag B.
E2 : One red ball and one black ball is transferred from bag A to bag B.
E3 : Two black balls are transferred from bag A to bag B.
A : Ball drawn from bag B is red.
So,

\[P\left( E_1 \right) = \frac{^{3}{}{C}_2}{^{8}{}{C}_2} = \frac{3}{28}\]

\[P\left( E_2 \right) = \frac{^{3}{}{C}_1 \times ^{5}{}{C}_1}{^{8}{}{C}_2} = \frac{15}{28}\]

\[P\left( E_3 \right) = \frac{^{5}{}{C}_2}{^{8}{}{C}_2} = \frac{10}{28}\]

Also,

\[P\left( \frac{A}{E_1} \right) = \frac{6}{10}\]

\[P\left( \frac{A}{E_2} \right) = \frac{5}{10}\]

\[P\left( \frac{A}{E_3} \right) = \frac{4}{10}\]

∴ Required probability
= Probability that two red balls were transferred from A to B given that the ball drawn from bag B is red .

\[= P\left( \frac{E_1}{A} \right) \]

\[ = \frac{P\left( E_1 \right)P\left( \frac{A}{E_1} \right)}{P\left( E_1 \right)P\left( \frac{A}{E_1} \right) + P\left( E_2 \right)P\left( \frac{A}{E_2} \right) + P\left( E_3 \right)P\left( \frac{A}{E_3} \right)} \left[ \text { Using Baye's Theorem } \right] \]

\[ = \frac{\frac{3}{28} \times \frac{6}{10}}{\frac{3}{28} \times \frac{6}{10} + \frac{15}{28} \times \frac{5}{10} + \frac{10}{28} \times \frac{4}{10}}\]

\[ = \frac{18}{18 + 75 + 40}\]

\[ = \frac{18}{133}\]

shaalaa.com
Probability Examples and Solutions
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2015-2016 (March) Foreign Set 2

संबंधित प्रश्न

In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set and tossed five times. If all the five times, the result was heads, find the probability that the selected coin had heads on both the sides.


An urn contains 3 white, 4 red and 5 black balls. Two balls are drawn one by one without replacement. What is the probability that at least one ball is black?


An urn contains 10 black and 5 white balls. Two balls are drawn from the urn one after the other without replacement. What is the probability that both drawn balls are black?

 

If A and B are two events such that 2 P (A) = P (B) = \[\frac{5}{13}\]  and P (A/B) =  \[\frac{2}{5},\]  find P (A ∪ B).


A die is thrown three times. Find P (A/B) and P (B/A), if
A = 4 appears on the third toss, B = 6 and 5 appear respectively on first two tosses.


The probability that a certain person will buy a shirt is 0.2, the probability that he will buy a trouser is 0.3, and the probability that he will buy a shirt given that he buys a trouser is 0.4. Find the probability that he will buy both a shirt and a trouser. Find also the probability that he will buy a trouser given that he buys a shirt.


In a school there are 1000 students, out of which 430 are girls. It is known that out of 430, 10% of the girls study in class XII. What is the probability that a student chosen randomly studies in class XII given that the chosen student is a girl?


Given two independent events A and B such that P (A) = 0.3 and P (B) = 0.6. Find P (A ∩ B).


Tickets are numbered from 1 to 10. Two tickets are drawn one after the other at random. Find the probability that the number on one of the tickets is a multiple of 5 and on the other a multiple of 4.

 

A husband and wife appear in an interview for two vacancies for the same post. The probability of husband's selection is 1/7 and that of wife's selection is 1/5. What is the probability that only one of them will be selected ?

 


A, B and C in order toss a coin. The one to throw a head wins. What are their respective chances of winning assuming that the game may continue indefinitely?


Three persons ABC throw a die in succession till one gets a 'six' and wins the game. Find their respective probabilities of winning.


In a hockey match, both teams A and B scored same number of goals upto the end of the game, so to decide the winner, the refree asked both the captains to throw a die alternately and decide that the team, whose captain gets a first six, will be declared the winner. If the captain of team A was asked to start, find their respective probabilities of winning the match and state whether the decision of the refree was fair or not.


A bag A contains 5 white and 6 black balls. Another bag B contains 4 white and 3 black balls. A ball is transferred from bag A to the bag B and then a ball is taken out of the second bag. Find the probability of this ball being black.


A bag contains 3 white and 2 black balls and another bag contains 2 white and 4 black balls. One bag is chosen at random. From the selected bag, one ball is drawn. Find the probability that the ball drawn is white.


The contents of three bags I, II and III are as follows:
Bag I : 1 white, 2 black and 3 red balls,
Bag II : 2 white, 1 black and 1 red ball;
Bag III : 4 white, 5 black and 3 red balls.
A bag is chosen at random and two balls are drawn. What is the probability that the balls are white and red?


A bag contains 4 white and 5 black balls and another bag contains 3 white and 4 black balls. A ball is taken out from the first bag and without seeing its colour is put in the second bag. A ball is taken out from the latter. Find the probability that the ball drawn is white.


A bag contains 6 red and 8 black balls and another bag contains 8 red and 6 black balls. A ball is drawn from the first bag and without noticing its colour is put in the second bag. A ball is drawn from the second bag. Find the probability that the ball drawn is red in colour.


If A and B are two events write the expression for the probability of occurrence of exactly one of two events.


In a competition AB and C are participating. The probability that A wins is twice that of B, the probability that B wins is twice that of C. Find the probability that A losses.


If A and B are independent events, then write expression for P(exactly one of AB occurs).


Three faces of an ordinary dice are yellow, two faces are red and one face is blue. The dice is rolled 3 times. The probability that yellow red and blue face appear in the first second and third throws respectively, is


Two dice are thrown simultaneously. The probability of getting a pair of aces is


Choose the correct alternative in the following question:

\[\text{ If}  P\left( A \right) = \frac{3}{10}, P\left( B \right) = \frac{2}{5} \text{ and } P\left( A \cup B \right) = \frac{3}{5}, \text{ then} P\left( A|B \right) + P\left( B|A \right) \text{ equals } \]


Mark the correct alternative in the following question:

\[\text{ If A and B are two events such that } P\left( A \right) = \frac{1}{2}, P\left( B \right) = \frac{1}{3}, P\left( A|B \right) = \frac{1}{4}, \text{ then } P\left( A \cap B \right) \text{ equals} \]


Mark the correct alternative in the following question: A bag contains 5 red and 3 blue balls. If 3 balls are drawn at random without replacement, then the probability of getting exactly one red ball is


Mark the correct alternative in the following question:
Two cards are drawn from a well shuffled deck of 52 playing cards with replacement. The probability that both cards are queen is


Mark the correct alternative in the following question:
A die is thrown and a card is selected at random from a deck of 52 playing cards. The probability of getting an even number of the die and a spade card is


The probability that in a year of 22nd century chosen at random, there will be 53 Sunday, is ______.


From a set of 100 cards numbered 1 to 100, one card is drawn at random. The probability that the number obtained on the card is divisible by 6 or 8 but not by 24 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×