Advertisements
Advertisements
प्रश्न
Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.
उत्तर
Equation of the plane passing through the line of intersection of the given planes is
\[\left( x + 2y + 3z - 4 \right) + \lambda\left( 2x + y - z + 5 \right) = 0\]
\[ \Rightarrow \left( 2\lambda + 1 \right)x + \left( \lambda + 2 \right)y + \left( 3 - \lambda \right)z = 4 - 5\lambda\]
This equation of the plane can be written in the intercept form as
x-intercept = 2 × z-intercept
\[\therefore \frac{4 - 5\lambda}{2\lambda + 1} = 2\left( \frac{4 - 5\lambda}{3 - \lambda} \right)\]
\[ \Rightarrow 4\lambda + 2 = 3 - \lambda\]
\[ \Rightarrow \lambda = \frac{1}{5}\]
Therefore, the equation of a plane is
\[\frac{7}{5}x + \frac{11}{5}y + \frac{14}{5}z = 3\]
\[ \Rightarrow 7x + 11y + 14z = 15\]
Now, the equation of plane parallel to the plane 7x + 11y + 14z = 5 is 7x + 11y + 14z = d.
The plane 7x + 11y + 14z = d passes through (2, 3, −1).
∴ d = 14 + 33 − 14 = 33
Hence, the equation of the required plane is 7x + 11y + 14z = 33.
The vector equation of this plane is `vecr.(7hati + 11hatj + 14hatk)= 33.`
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.
Find the coordinates of the point where the line through (3, −4, −5) and (2, − 3, 1) crosses the plane 2x + y + z = 7).
If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.
Find the intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 and also find the direction cosines of the normal to the plane.
Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane.
Reduce the equation \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.
Find the equation of a plane which is at a distance of \[3\sqrt{3}\] units from the origin and the normal to which is equally inclined to the coordinate axes.
Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form.
Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.
Prove that the line of section of the planes 5x + 2y − 4z + 2 = 0 and 2x + 8y + 2z − 1 = 0 is parallel to the plane 4x − 2y − 5z − 2 = 0.
Write the plane \[\vec{r} \cdot \left( 2 \hat{i} + 3 \hat{j} - 6 \hat{k} \right) = 14\] in normal form.
Write a vector normal to the plane \[\vec{r} = l \vec{b} + m \vec{c} .\]
Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right) = 5 .\]
Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .
The equation of the plane containing the two lines
Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis.
Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`
What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2
Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`