English

Find the Equation of the Plane Which Contains the Line of Intersection of the Planes X + 2 Y + 3 Z − 4 = 0 and 2 X + Y − Z + 5 = 0 and Whose X-intercept is Twice Its Z-intercept. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.

Solution

Equation of the plane passing through the line of intersection of the given planes is

\[\left( x + 2y + 3z - 4 \right) + \lambda\left( 2x + y - z + 5 \right) = 0\]

\[ \Rightarrow \left( 2\lambda + 1 \right)x + \left( \lambda + 2 \right)y + \left( 3 - \lambda \right)z = 4 - 5\lambda\]

This equation of the plane can be written in the intercept form as

\[\frac{x}{\left( \frac{4 - 5\lambda}{2\lambda + 1} \right)} + \frac{y}{\left( \frac{4 - 5\lambda}{\lambda + 2} \right)} + \frac{z}{\left( \frac{4 - 5\lambda}{3 - \lambda} \right)} = 1\]
It is given that,
x-intercept = 2 × z-intercept

\[\therefore \frac{4 - 5\lambda}{2\lambda + 1} = 2\left( \frac{4 - 5\lambda}{3 - \lambda} \right)\]

\[ \Rightarrow 4\lambda + 2 = 3 - \lambda\]

\[ \Rightarrow \lambda = \frac{1}{5}\]

Therefore, the equation of a plane is 

\[\frac{7}{5}x + \frac{11}{5}y + \frac{14}{5}z = 3\]

\[ \Rightarrow 7x + 11y + 14z = 15\]

Now, the equation of plane parallel to the plane 7x + 11y + 14z = 5 is 7x + 11y + 14z = d.
The plane  7x + 11y + 14z = d passes through (2, 3, −1).
∴ d = 14 + 33 − 14 = 33
Hence, the equation of the required plane is 7x + 11y + 14z = 33.
The vector equation of this plane is `vecr.(7hati + 11hatj + 14hatk)= 33.`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) Foreign Set 2

RELATED QUESTIONS

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (­−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 

If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

Find the intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 and also find the direction cosines of the normal to the plane.


Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane. 


Write the normal form of the equation of the plane 2x − 3y + 6z + 14 = 0.

 

Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is  \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form. 

 

Find the vector equation of the plane passing through the points (3, 4, 2) and (7, 0, 6) and perpendicular to the plane 2x − 5y − 15 = 0. Also, show that the plane thus obtained contains the line \[\vec{r} = \hat{i} + 3 \hat{j}  - 2 \hat{k}  + \lambda\left( \hat{i}  - \hat{j}  + \hat{k}  \right) .\]

 

Write the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) = 14\]  in normal form.

 
 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×