Advertisements
Advertisements
Question
Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane.
Solution
\[ \text{ The given equation of the plane is } \]
\[2x - 3y - 6z = 14 . . . \left( 1 \right)\]
\[\text{ Now },\sqrt{2^2 + \left( - 3 \right)^2 + \left( - 6 \right)^2}=\sqrt{4 + 9 + 36}=\sqrt{49}= 7\]
\[\text{ Dividing (1) by 7, we get } \]
\[\frac{2}{7}x - \frac{3}{7}y - \frac{6}{7}z = 2 . . . \left( 2 \right)\]
\[\text{ The Cartesian equation of the normal form of a plane is } \]
\[lx + my + nz = p . . . \left( 3 \right), \]
\[ \text{ where l, m and n are direction cosines of normal to the plane and p is the length of the perpendicular from the origin to the plane }.\]
\[ \text{ Comparing (1) and (2), we get } \]
\[ \text{ direction cosines } : l = \frac{2}{7}, m = \frac{- 3}{7}, n = \frac{- 6}{7} \text{ and } \]
\[ \text{ length of the perpendicular from the origin to the plane } : p = 2\]
APPEARS IN
RELATED QUESTIONS
In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
z = 2
In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
x + y + z = 1
In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
2x + 3y – z = 5
In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.
5y + 8 = 0
Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.
The planes: 2x − y + 4z = 5 and 5x − 2.5y + 10z = 6 are
(A) Perpendicular
(B) Parallel
(C) intersect y-axis
(C) passes through `(0,0,5/4)`
If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.
Find the intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 and also find the direction cosines of the normal to the plane.
Reduce the equation \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 2 \hat{k} \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.
The direction ratios of the perpendicular from the origin to a plane are 12, −3, 4 and the length of the perpendicular is 5. Find the equation of the plane.
Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.
Find the equation of a plane which is at a distance of \[3\sqrt{3}\] units from the origin and the normal to which is equally inclined to the coordinate axes.
Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form.
Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.
Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.
Prove that the line of section of the planes 5x + 2y − 4z + 2 = 0 and 2x + 8y + 2z − 1 = 0 is parallel to the plane 4x − 2y − 5z − 2 = 0.
Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]
Find the vector equation of the plane passing through the points (3, 4, 2) and (7, 0, 6) and perpendicular to the plane 2x − 5y − 15 = 0. Also, show that the plane thus obtained contains the line \[\vec{r} = \hat{i} + 3 \hat{j} - 2 \hat{k} + \lambda\left( \hat{i} - \hat{j} + \hat{k} \right) .\]
Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j} + 2 \hat{k} \right) = 5 .\]
Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .
The equation of the plane containing the two lines
Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.
The equations of x-axis in space are ______.
If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.
The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.
Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`
What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2
Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`