English

Find the Equation of a Plane Which is at a Distance of 3 √ 3 Units from the Origin and the Normal to Which is Equally Inclined to the Coordinate Axes. - Mathematics

Advertisements
Advertisements

Question

Find the equation of a plane which is at a distance of \[3\sqrt{3}\]  units from the origin and the normal to which is equally inclined to the coordinate axes.

 
Sum

Solution

\[\text{ Let } \alpha, \beta \text{ and }  \gamma \text{ be the angles made by }\vec{n} \text{ withx, y andz-axes, respectively }.\]

\[\text{ It is given that } \]

\[\alpha = \beta = \gamma\]

\[ \Rightarrow \cos \alpha = \cos \beta = \cos \gamma\]

\[ \Rightarrow l = m = n, \text{ wherel, m, n are direction cosines of }  \vec{n} .\]

\[\text{ But } l^2 + m^2 + n^2 = 1\]

\[ \Rightarrow l^2 + l^2 + l^2 = 1\]

\[ \Rightarrow \text{ 3  l}^2 = 1\]

\[ \Rightarrow l^2 = \frac{1}{3}\]

\[ \Rightarrow l = \frac{1}{\sqrt{3}}\]

\[So,l = m = n = \frac{1}{\sqrt{3}}\]

\[\text{ It is given that the length of the perpendicular of the plane from the origin } ,p= 3\sqrt{3}\]

\[ \text{ The normal form of the plane islx + my + nz = p } \]

\[ \Rightarrow \frac{1}{\sqrt{3}}x + \frac{1}{\sqrt{3}}y + \frac{1}{\sqrt{3}}z = 3\sqrt{3}\]

\[ \Rightarrow x + y + z = 3\sqrt{3} \left( \sqrt{3} \right) \]

\[ \Rightarrow x + y + z = 9\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.04 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.04 | Q 8 | Page 19

RELATED QUESTIONS

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y – z = 5


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.


If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (­−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Find the coordinates of the point where the line through the points (3, - 4, - 5) and (2, - 3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2,- 3) and (0, 4, 3)


Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 

If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

Find the intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 and also find the direction cosines of the normal to the plane.


Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane. 


Write the normal form of the equation of the plane 2x − 3y + 6z + 14 = 0.

 

Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.


Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 

Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]

 

Find the vector equation of the plane passing through the points (3, 4, 2) and (7, 0, 6) and perpendicular to the plane 2x − 5y − 15 = 0. Also, show that the plane thus obtained contains the line \[\vec{r} = \hat{i} + 3 \hat{j}  - 2 \hat{k}  + \lambda\left( \hat{i}  - \hat{j}  + \hat{k}  \right) .\]

 

Write the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) = 14\]  in normal form.

 
 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.


The equations of x-axis in space are ______.


Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×