English

Find the Value of λ Such that the Line X − 2 6 = Y − 1 λ = Z + 5 − 4 is Perpendicular to the Plane 3x − Y − 2z = 7. - Mathematics

Advertisements
Advertisements

Question

Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 
Sum

Solution

\[\text{ Direction ratios of the given line are proportional to 6, } \lambda, -4.\]

\[\text{ Direction ratios of the plane are 3, -1, -2.}\]

\[\text{ Since the given line is parallel to the given plane, the line is perpendicular to the normal of the given plane. } \]

\[ \Rightarrow \left( 6 \right) \left( 3 \right) + \left( \lambda \right) \left( - 1 \right) + \left( - 4 \right) \left( - 2 \right) = 0\]

\[ \Rightarrow 18 - \lambda + 8 = 0\]

\[ \Rightarrow \lambda = 26\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.11 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.11 | Q 24 | Page 62

RELATED QUESTIONS

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y – z = 5


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 

If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

Reduce the equation \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.

 


The direction ratios of the perpendicular from the origin to a plane are 12, −3, 4 and the length of the perpendicular is 5. Find the equation of the plane. 


Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.

 

Find the equation of a plane which is at a distance of \[3\sqrt{3}\]  units from the origin and the normal to which is equally inclined to the coordinate axes.

 

Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is  \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form. 

 

Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.

 

Prove that the line of section of the planes 5x + 2y − 4z + 2 = 0 and 2x + 8y + 2z − 1 = 0 is parallel to the plane 4x − 2y − 5z − 2 = 0.

 

Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]

 

Write the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) = 14\]  in normal form.

 
 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.


The equations of x-axis in space are ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×