English

Reduce the Equation → R ⋅ ( ^ I − 2 ^ J + 2 ^ K ) + 6 = 0 to Normal Form And, Hence, Find the Length of the Perpendicular from the Origin to the Plane. - Mathematics

Advertisements
Advertisements

Question

Reduce the equation \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.

 

Sum

Solution

\[ \text{ The given equation of the plane is } \]
\[ \vec{r} . \left( \hat{i}  -\text{  2 }\hat{j}  +\text{  2 }  \hat{k}  \right) + 6 = 0\]
\[ \Rightarrow \vec{r} . \left( \hat{i} -\text{  2 } \hat{j}  + \text{  2 } \hat{k}  \right) = - 6 \text{ or }  \vec{r} . \vec{n} = - 6, \text{ where }  \vec{n} = \hat{i} -\text{  2 }  \hat{j} + \text{  2 } \hat{k} \]
\[\left| \vec{n} \right| = \sqrt{1 + 4 + 4} = 3\]
\[ \text{ For reducing the given equation to normal form, we need to divide it by } \left| \vec{n} \right|. \text{ Then, we get } \]
\[ \vec{r} . \frac{\vec{n}}{\left| \vec{n} \right|} = \frac{- 6}{\left| \vec{n} \right|}\]
\[ \Rightarrow \vec{r} . \left( \frac{\hat{i} - \text{  2 } \hat{j} + \text{  2 } \hat{k}}{3} \right) = \frac{- 6}{3}\]
\[ \Rightarrow \vec{r} . \left( \frac{1}{3} \hat{i} - \frac{2}{3} \hat{j}  + \frac{2}{3} \hat{k}  \right) = - 2\]
\[ \text{ Dividing both sides by -1, we get } \]
\[ \vec{r} . \left( - \frac{1}{3} \hat{i}  + \frac{2}{3} \hat{j}  - \frac{2}{3} \hat{k}  \right) = 2 . . . \left( 1 \right)\]
\[ \text{ The equation of the plane in normal form is } \]
\[ \vec{r} . \hat{n}  = d . . . \left( 2 \right)\]
`( \text{ where d   is the distance of the plane from the origin } )`
\[\text{ Comparing (1) and (2) } ,\]
\[ \text{ length of the perpendicular from the origin to the plane = d = 2  units }\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.04 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.04 | Q 4 | Page 19

RELATED QUESTIONS

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 

If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

Find the intercepts made on the coordinate axes by the plane 2x + y − 2z = 3 and also find the direction cosines of the normal to the plane.


Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane. 


Write the normal form of the equation of the plane 2x − 3y + 6z + 14 = 0.

 

Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.

 

Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is  \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form. 

 

Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.

 

Prove that the line of section of the planes 5x + 2y − 4z + 2 = 0 and 2x + 8y + 2z − 1 = 0 is parallel to the plane 4x − 2y − 5z − 2 = 0.

 

Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]

 

Find the vector equation of the plane passing through the points (3, 4, 2) and (7, 0, 6) and perpendicular to the plane 2x − 5y − 15 = 0. Also, show that the plane thus obtained contains the line \[\vec{r} = \hat{i} + 3 \hat{j}  - 2 \hat{k}  + \lambda\left( \hat{i}  - \hat{j}  + \hat{k}  \right) .\]

 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


The equation of the plane containing the two lines

\[\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z - 0}{3} \text{ and }\frac{x}{- 2} = \frac{y - 2}{- 3} = \frac{z + 1}{- 1}\]
 
 

The equations of x-axis in space are ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×