हिंदी

Find the equation of a plane which is at a distance 33 units from origin and the normal to which is equally inclined to coordinate axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of a plane which is at a distance `3sqrt(3)` units from origin and the normal to which is equally inclined to coordinate axis.

योग

उत्तर

Since, the normal to the plane is equally inclined to the axes

∴ cos α = cos β = cos ϒ

⇒ cos2α + cos2α + cos2α = 1

⇒ 3 cos2α = 1

⇒ cos α = `1/sqrt(3)`

⇒ cos α = cos β = cos ϒ = `1/sqrt(3)`

So, the normal is `vec"N" = 1/sqrt(3)hat"i" + 1/sqrt(3)hat"j" + 1/sqrt(3)hat"k"`

∴ Equation of the plane is `vec"r" . vec"N"` = d

⇒ `vec"r" . vec"N"/|vec"N"|` = d

⇒ `(vec"r"*(1/sqrt(3)hat"i" + 1/sqrt(3)hat"j" + 1/sqrt(3)hat"k"))/1 = 3sqrt(3)`

⇒ `vec"r"*(1/sqrt(3)hat"i" + 1/sqrt(3)hat"j" + 1/sqrt(3)hat"k") = 3sqrt(3)`

⇒ `(xhat"i" + yhat"j" + zhat"k") * 1/sqrt(3) (hat"i" + hat"j" + hat"k") = 3sqrt(3)`

⇒ x + y + z = `3sqrt(3) * sqrt(3)`

⇒ x + y + z = 9

Hence, the required equation of plane is x + y + z = 9.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Three Dimensional Geometry - Exercise [पृष्ठ २३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 11 Three Dimensional Geometry
Exercise | Q 8 | पृष्ठ २३५

संबंधित प्रश्न

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (­−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


Find the equation of the plane passing through the point (2, 3, 1), given that the direction ratios of the normal to the plane are proportional to 5, 3, 2.

 

Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane. 


Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.

 

Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.

 

Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.


Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 

Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]

 

Find the vector equation of the plane passing through the points (3, 4, 2) and (7, 0, 6) and perpendicular to the plane 2x − 5y − 15 = 0. Also, show that the plane thus obtained contains the line \[\vec{r} = \hat{i} + 3 \hat{j}  - 2 \hat{k}  + \lambda\left( \hat{i}  - \hat{j}  + \hat{k}  \right) .\]

 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


The equation of the plane containing the two lines

\[\frac{x - 1}{2} = \frac{y + 1}{- 1} = \frac{z - 0}{3} \text{ and }\frac{x}{- 2} = \frac{y - 2}{- 3} = \frac{z + 1}{- 1}\]
 
 

The equation of the plane \[\vec{r} = \hat{i} - \hat{j}  + \lambda\left( \hat{i}  + \hat{j} + \hat{k}  \right) + \mu\left( \hat{i}  - 2 \hat{j}  + 3 \hat{k}  \right)\]  in scalar product form is

 

 

 

 

 
 
 

Find the image of the point having position vector `hat"i" + 3hat"j" + 4hat"k"` in the plane `hat"r" * (2hat"i" - hat"j" + hat"k") + 3` = 0.


The equations of x-axis in space are ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×