Advertisements
Advertisements
प्रश्न
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
उत्तर
Given that A(2, 3, 4) and B(4, 5, 8)
Coordinates of mid-point C are `((2 + 4)/2, (3 + 5)/2, (4 + 8)/2)` = (3, 4, 6)
Now direction ratios of the normal to the plane = direction ratios of AB
= 4 – 2, 5 – 3, 8 – 4
= (2, 2, 4)
Equation of the plane is
a(x – x1) + b(y – y1) + c(z – z1) = 0
⇒ 2(x – 3) + 2(y – 4) + 4(z – 6) = 0
⇒ 2x – 6 + 2y – 8 + 4z – 24 = 0
⇒ 2x + 2y + 4z = 38
⇒ x + y + 2z = 19
Hence, the required equation of plane is
x + y + 2z = 19 or `vec"r"(hat"i" + hat"j" + 2hat"k")` = 19.
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the distance of the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.