हिंदी

Find the Vector and Cartesian Equations of a Plane Passing Through the Point (1, −1, 1) and Normal to the Line Joining the Points (1, 2, 5) and (−1, 3, 1). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 
योग

उत्तर

\[ \text{ Since the given plane passes through the point (1, -1, 1) and is normal to the line joiningA(1, 2, 5) and B(-1, 3, 1) } ,\]

\[ \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =\left( - \text{ i} + \text{ 3 } \hat{j} + \hat{k} \right) - \left( \hat{i} + \text{ 2 }\hat{j} + \text{ 5 }\hat{k} \right) = - \text{  2} \hat{i}  + \hat{j} - \text{ 4 }\hat{k} \]

\[\text{ We know that the vector equation of the plane passing through a point }  \vec{a} \text{ and normal to } \vec{n} \text{ is }\]

\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]

\[\text{ Substituting } \vec{a} = \hat{i} - \hat{j} + \hat{k}  \text{ and }  \vec{n} = - \text{  2 } \hat{i}+ \hat{j} - \text{  4 } \hat{k} , \text { we get }\]

\[ \vec{r} . \left( - \text{ 2 } \hat{i}] + \hat{j} - 4 \hat{k} \right) = \left( \hat{i} - \hat{j} + \hat{k} \right) . \left( - \text{ 2 }\hat{i} + \hat{j}  - 4 \hat{k} \right)\]

\[ \Rightarrow \vec{r} . \left( \text{ - 2 } \hat{i} + \hat{j}  - 4 \hat{k} \right) = \text{ - 2 - 1 - 4 }\]

\[ \Rightarrow \vec{r} . \left[ - \left( \text{ 2  }\hat{i} - \hat{j} + 4 \hat{k} \right) \right] = - 7\]

\[ \Rightarrow \vec{r} . \left( \text{ 2 } \hat{i} - \hat{j} + 4 \hat{k} \right) = 7\]

\[\text{ For Cartesian form, we need to substitute } \vec{r} = x \hat{i} + \text{ y } \hat{j} + z \hat{k}  \text{ in the vector equation } .\]

\[\text{ Then, we get } \]

\[\left( \text{ x }\hat{i} + \text{ y }\hat{j} + z \hat{k} \right) . \left(  \text{ 2 }\hat{i} - \hat{j}  + 4 \hat{k} \right) = 7\]

\[ \Rightarrow 2x - y + 4z = 7\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.03 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.03 | Q 5 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector equation of each one of following planes. 

x + y = 3

 

\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 


A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.

 

Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


The locus represented by xy + yz = 0 is ______.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×