Advertisements
Advertisements
प्रश्न
Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.
उत्तर
\[\text{ The equation of any plane passing through (-1, -1, 2) is } \]
\[a \left( x + 1 \right) + b \left( y + 1 \right) + c \left( z - 2 \right) = 0 . . . \left( 1 \right)\]
\[ \text{ It is given that (1) is perpendicular to each of the planes 3x + 2y - 3z = 1 and 5x - 4y + z = 5 . Then } ,\]
\[3a + 2b - 3c = 0 . . . \left( 2 \right)\]
\[5a - 4b + c = 0 . . . \left( 3 \right)\]
\[\text{ Solving (1), (2) and (3), we get } \]
\[\begin{vmatrix}x + 1 & y + 1 & z - 2 \\ 3 & 2 & - 3 \\ 5 & - 4 & 1\end{vmatrix} = 0\]
\[ \Rightarrow - 10 \left( x + 1 \right) - 18 \left( y + 1 \right) - 22 \left( z - 2 \right) = 0\]
\[ \Rightarrow 5 \left( x + 1 \right) + 9 \left( y + 1 \right) + 11 \left( z - 2 \right) = 0\]
\[ \Rightarrow 5x + 5 + 9y + 9 + 11z - 22 = 0\]
\[ \Rightarrow 5x + 9y + 11z - 8 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
The locus represented by xy + yz = 0 is ______.
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are