Advertisements
Advertisements
प्रश्न
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
उत्तर
\[ \text { The normal is passing through the points A(1, 4, 2) and B (2, 3, 5). }\]
\[\text{ So } , \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =\left(\text{ 2 } \hat{i} +\text{ 3 } \hat{j} + \text{ 5 }\hat{k} \right) - \left( \hat{i} + \text{ 4 }\hat{j} +\text{ 2 } \hat{k} \right) = \hat{i} - \hat{j} + \text{ 3 }\hat{k} \]
\[ \text{ We know that the vector equation of the plane passing through a point } (1, 2, 1) ( \vec{a} ) \text{ and normal to } \vec{n} \text{ is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \text{ Substituting } \vec{a} = \hat{i} +\text{ 2 } \hat{j} + \hat{k} \text{ and } \vec{n} = \hat{i} - \hat{j} + \text{ 3 } \hat{k} , \text{ we get } \]
\[ \vec{r} . \left( \hat{i} - \hat{j} +\text{ 3 } \hat{k} \right) = \left( \hat{i} +\text{ 2 } \hat{j} + \hat{k} \right) . \left( \hat{i} - \hat{j} + \text{ 3 } \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \hat{i} - \hat{j} +\text{ 3 } \hat{k} \right) = 1 - 2 + 3\]
\[ \Rightarrow \vec{r} . \left( \hat{i} - \hat{j} + \text{ 3 }\hat{k} \right) = 2 . . . \left( 1 \right)\]
\[ \text{ To find the perpendicular distance of this plane from the origin, we have to reduce this to normal form } .\]
\[ \text{ We have } \vec{n} = \hat{i} - \hat{j} + \text{ 3 } \hat{k} ; \left| \vec{n} \right| = \sqrt{1 + 1 + 9} = \sqrt{11}\]
\[ \text{ Dividing (1) by } \sqrt{11}, \text{ we get } \]
\[ \vec{r} . \left( \frac{1}{\sqrt{11}} \hat{i} - \frac{1}{\sqrt{11}} \hat{j} + \frac{3}{\sqrt{11}} \hat{k} \right) = \frac{2}{\sqrt{11}}, \text{ which is the normal form of plane } (1).\]
\[ \text{ So, the perpendicular distance of plane (1) from the origin } =\frac{2}{\sqrt{11}}\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the vector equations of the coordinate planes.
Find the vector equation of each one of following planes.
x + y − z = 5
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is