Advertisements
Advertisements
प्रश्न
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
उत्तर
The normal is passing through the points A (-1, 2, 3) and B (3, -5, 6). So,
` \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =( \text{ 3 } \hat{ i } -\text{ 5 } \hat{ j } + \text{ 6 } \hat{ k } ) - \( - \hat{ i } + \text{ 2 } \hat{ j } + 3 { k} ) = \text{ 4 } \hat{ i } - \text{ 7 } \hat{ j } + \text{ 3 } \hat{ k } `
` \text{ Mid-point of AB}=( \frac{- 1 + 3}{2}, \frac{2 - 5}{2}, \frac{3 + 6}{2} )=( 1, \frac{- 3}{2}, \frac{9}{2} `
` \text{ Since the plane passes through}( 1, \frac{- 3}{2}, \frac{9}{2} ), \vec{a} =\hat{ i } - \frac{3}{2}\hat{ j } + \frac{9}{2} \hat{ k } `
` \text{ We know that the vector equation of the plane passing through a point } \vec{a} \text{ and normal to} \vec{n} \text{ is} `
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \] `
` \text { Substituting }\vec{a} = \hat{ i } - \hat{ j } + \hat{ k }\text{ and }\vec{n} =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k } ,\text{ we get } `
` \vec{r} . ( =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = (\hat{ i} - \frac{3}{2} \hat{ j } + \frac{9}{2}\hat{ k } ) . (\text{ 4 } \hat{ i}- \text{ 7 } + \text{ 3 } \hat{ k }) `
` ⇒ \vec{r} . ( =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = 28 `
\[\]
` \text{ Substituting }\vec{r} = \text{ x } \hat{ i} +\text{ y } \hat{ j }+\text{ z} \hat{ k}\text{ in the vector equation, we get } `
` (\text{ x } \hat{ i} +\text{ y } \hat{ j }+\text{ z} \hat{ k} ). (\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = 28 `
\[ \Rightarrow 4x - 7y + 3z = 28\]
\[ \Rightarrow 4x - 7y + 3x - 28 = 0\]
\[\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]
Find the vector equations of the coordinate planes.
Show that the normals to the following pairs of planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the zx - plane .
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the distance of the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
The locus represented by xy + yz = 0 is ______.