हिंदी

Find the Equation of the Plane Which Bisects the Line Segment Joining the Points (−1, 2, 3) and (3, −5, 6) at Right Angles. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.

योग

उत्तर

The normal is passing through the points A (-1, 2, 3) and B (3, -5, 6). So,

` \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =( \text{ 3 } \hat{ i } -\text{ 5 } \hat{ j  } + \text{ 6 } \hat{ k } ) - \(  - \hat{ i } + \text{ 2 } \hat{ j } + 3 { k} ) = \text{ 4 } \hat{ i } - \text{ 7 } \hat{ j } + \text{ 3 } \hat{ k } ` 

` \text{ Mid-point of  AB}=( \frac{- 1 + 3}{2}, \frac{2 - 5}{2}, \frac{3 + 6}{2} )=( 1, \frac{- 3}{2}, \frac{9}{2} `

`  \text{ Since the plane passes through}( 1, \frac{- 3}{2}, \frac{9}{2} ), \vec{a} =\hat{ i } - \frac{3}{2}\hat{ j } + \frac{9}{2} \hat{ k } `

`  \text{ We know that the vector equation of the plane passing through a point   } \vec{a} \text{ and normal to} \vec{n} \text{ is}  `

\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \] `     

` \text { Substituting }\vec{a} = \hat{ i } - \hat{ j } + \hat{ k }\text{ and }\vec{n} =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k } ,\text{  we get } `

` \vec{r} . ( =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = (\hat{ i} - \frac{3}{2} \hat{ j } + \frac{9}{2}\hat{ k } ) . (\text{ 4 } \hat{ i}- \text{ 7 } + \text{ 3 } \hat{ k }) `

`  ⇒ \vec{r} . ( =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = 28  `

\[\]

 `  \text{ Substituting }\vec{r} = \text{ x } \hat{ i} +\text{ y } \hat{ j }+\text{ z} \hat{ k}\text{  in the vector equation, we get } `

` (\text{ x } \hat{ i} +\text{ y } \hat{ j }+\text{ z} \hat{ k} ). (\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = 28  `

\[ \Rightarrow 4x - 7y + 3z = 28\]

\[ \Rightarrow 4x - 7y + 3x - 28 = 0\]

\[\]

\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.03 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.03 | Q 17 | पृष्ठ १४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equations of the coordinate planes.

 

Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


The locus represented by xy + yz = 0 is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×