English

Find the Equation of the Plane Which Bisects the Line Segment Joining the Points (−1, 2, 3) and (3, −5, 6) at Right Angles. - Mathematics

Advertisements
Advertisements

Question

Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.

Sum

Solution

The normal is passing through the points A (-1, 2, 3) and B (3, -5, 6). So,

` \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =( \text{ 3 } \hat{ i } -\text{ 5 } \hat{ j  } + \text{ 6 } \hat{ k } ) - \(  - \hat{ i } + \text{ 2 } \hat{ j } + 3 { k} ) = \text{ 4 } \hat{ i } - \text{ 7 } \hat{ j } + \text{ 3 } \hat{ k } ` 

` \text{ Mid-point of  AB}=( \frac{- 1 + 3}{2}, \frac{2 - 5}{2}, \frac{3 + 6}{2} )=( 1, \frac{- 3}{2}, \frac{9}{2} `

`  \text{ Since the plane passes through}( 1, \frac{- 3}{2}, \frac{9}{2} ), \vec{a} =\hat{ i } - \frac{3}{2}\hat{ j } + \frac{9}{2} \hat{ k } `

`  \text{ We know that the vector equation of the plane passing through a point   } \vec{a} \text{ and normal to} \vec{n} \text{ is}  `

\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \] `     

` \text { Substituting }\vec{a} = \hat{ i } - \hat{ j } + \hat{ k }\text{ and }\vec{n} =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k } ,\text{  we get } `

` \vec{r} . ( =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = (\hat{ i} - \frac{3}{2} \hat{ j } + \frac{9}{2}\hat{ k } ) . (\text{ 4 } \hat{ i}- \text{ 7 } + \text{ 3 } \hat{ k }) `

`  ⇒ \vec{r} . ( =\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = 28  `

\[\]

 `  \text{ Substituting }\vec{r} = \text{ x } \hat{ i} +\text{ y } \hat{ j }+\text{ z} \hat{ k}\text{  in the vector equation, we get } `

` (\text{ x } \hat{ i} +\text{ y } \hat{ j }+\text{ z} \hat{ k} ). (\text{ 4 } \hat{ i}- \text{ 7 } \hat{ j } +\text{ 3 } \hat{ k }) = 28  `

\[ \Rightarrow 4x - 7y + 3z = 28\]

\[ \Rightarrow 4x - 7y + 3x - 28 = 0\]

\[\]

\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.03 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.03 | Q 17 | Page 14

RELATED QUESTIONS

Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Write the general equation of a plane parallel to X-axis.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×