Advertisements
Advertisements
Question
Determine the value of λ for which the following planes are perpendicular to each other.
Solution
` \text{ We know that the planes } \vec{r} . \vec{n_1} = d_1 , \vec{r} . \vec{n_2} = d_2 \text{ are perpendicular to each other only if } \vec{n_1} . \vec{n_2} =0.`
\[\text{ Here} , \vec{n_1} = \hat{i}| + 2 \hat{j} + 3 \hat{k} ; \vec{n_2} = \lambda \hat{i} + 2 \hat{j} - 7 \hat{k} \]
\[\text{ The given planes are perpendicular.} \]
\[ \Rightarrow \vec{n_1} . \vec{n_2} = 0\]
\[ \Rightarrow \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) . \left( \lambda \hat{i} + 2 \hat{j} - 7 \hat{k} \right) = 0\]
\[ \Rightarrow \lambda + 4 - 21 = 0\]
\[ \Rightarrow \lambda - 17 = 0\]
\[ \Rightarrow \lambda = 17\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
Find the vector equation of each one of following planes.
x + y = 3
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
The locus represented by xy + yz = 0 is ______.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,