English

Find the Coordinates of the Point Where the Line Through (5, 1, 6) and (3, 4, 1) Crosses The Yz - Plane . - Mathematics

Advertisements
Advertisements

Question

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .

Sum

Solution

\[ \text{ The equation of the line through the points (5, 1, 6) and (3, 4, 1) is } \]
\[\frac{x - 5}{3 - 5} = \frac{y - 1}{4 - 1} = \frac{z - 6}{1 - 6}\]
\[ \Rightarrow \frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5}\]
\[\text{ The coordinates of any point on this line are of the form} \]
\[\frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5} = \lambda\]
\[ \Rightarrow x = - 2\lambda + 5; y = 3\lambda + 1; z = - 5\lambda + 6\]
\[\text{ So, the coordinates of the point on the given line } are\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right).\]
\[\text{ Since this point lies on the YZ- plane,} \]
\[x = 0\]
\[ \Rightarrow - 2\lambda + 5 = 0\]
\[ \Rightarrow \lambda = \frac{5}{2}\]
\[\text{ So, the coordinates of the point are} \]
\[\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right)\]
\[ = \left( - 2 \left( \frac{5}{2} \right) + 5, 3 \left( \frac{5}{2} \right) + 1, - 5 \left( \frac{5}{2} \right) + 6 \right)\]
\[ = \left( 0, \frac{17}{2}, \frac{13}{2} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.12 [Page 65]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.12 | Q 1.1 | Page 65

RELATED QUESTIONS

Find the vector equations of the coordinate planes.

 

\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 


The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×