Advertisements
Advertisements
Question
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Solution
\[ \text{ The equation of the line through the points (5, 1, 6) and (3, 4, 1) is } \]
\[\frac{x - 5}{3 - 5} = \frac{y - 1}{4 - 1} = \frac{z - 6}{1 - 6}\]
\[ \Rightarrow \frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5}\]
\[\text{ The coordinates of any point on this line are of the form} \]
\[\frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5} = \lambda\]
\[ \Rightarrow x = - 2\lambda + 5; y = 3\lambda + 1; z = - 5\lambda + 6\]
\[\text{ So, the coordinates of the point on the given line } are\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right).\]
\[\text{ Since this point lies on the YZ- plane,} \]
\[x = 0\]
\[ \Rightarrow - 2\lambda + 5 = 0\]
\[ \Rightarrow \lambda = \frac{5}{2}\]
\[\text{ So, the coordinates of the point are} \]
\[\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right)\]
\[ = \left( - 2 \left( \frac{5}{2} \right) + 5, 3 \left( \frac{5}{2} \right) + 1, - 5 \left( \frac{5}{2} \right) + 6 \right)\]
\[ = \left( 0, \frac{17}{2}, \frac{13}{2} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the vector equations of the coordinate planes.
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the zx - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are