English

Find the Distance of the Point P (–1, –5, –10) from the Point of Intersection of the Line Joining the Points a (2, –1, 2) and B (5, 3, 4) with the Plane X – Y + Z = 5. - Mathematics

Advertisements
Advertisements

Question

Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.

Solution

The equation of the line passing through the points (2,-1,2) and B (5,3,4) is given by

\[\frac{x - 2}{5 - 2} = \frac{y + 1}{3 + 1} = \frac{z - 2}{4 - 2}\]

\[ \Rightarrow \frac{x - 2}{3} = \frac{y + 1}{4} = \frac{z - 2}{2} = m (\text { say})\]

\[ \Rightarrow x = 3m + 2 , y = 4m - 1 , z = 2m + 2\]

Now, putting the values of x , y and z in the equation of the plane \[x - y + z = 5\],

we get:

\[(3m + 2) - (4m - 1) + (2m + 2) = 5\]

\[ \Rightarrow m = 0\]

So, the point of intersection  of the line and the plane is (2,-1,2).

\[\therefore \text { The distance of the point} P ( - 1, - 5, - 10) \text { and the point of intersection} (2, - 1, 2) \text { is }\]

\[ = \sqrt{(3 )^2 + (4 )^2 + (12 )^2} = 13 \text { units }\]

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Foreign Set 1

RELATED QUESTIONS

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×