Advertisements
Advertisements
Question
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Solution
\[\text{ Let M be the foot of the perpendicular of the point P(3, 2, 1) in the plane 2x - y + z + 1 = 0 }. \]
\[\text{ Then,PM is the normal to the plane. So, the direction ratios of PM are proportional to 2, -1, 1. } \]
\[\text{ Since PM passes through P (3, 2, 1) and has direction ratios proportional to 2, -1, 1,} \]
\[\text{ equation of PQ is } \]
\[\frac{x - 3}{2} = \frac{y - 2}{- 1} = \frac{z - 1}{1} = r (\text{ say })\]
\[\text{ Let the coordinates of M be } \left( 2r + 3, - r + 2, r + 1 \right).\]
\[\text{ Since M lies in the plane } 2x - y + z + 1 = 0, \]
\[2 \left( 2r + 3 \right) - \left( - r + 2 \right) + r + 1 + 1 = 0\]
\[ \Rightarrow 4r + 6 + r - 2 + r + 2 = 0\]
\[ \Rightarrow 6r = - 6\]
\[ \Rightarrow r = - 1\]
\[\text{ Substituting the value of r in the coordinates of M, we get } \]
\[M = \left( 2r + 3, - r + 2, r + 1 \right) = \left( 2 \left( - 1 \right) + 3, - \left( - 1 \right) + 2, - 1 + 1 \right) = \left( 1, 3, 0 \right)\]
\[\text{ Now, the length of the perpendicular fromPonto the given plane } \]
\[ = \frac{\left| 2 \left( 3 \right) - \left( 2 \right) + \left( 1 \right) + 1 \right|}{\sqrt{4 + 1 + 1}}\]
\[ = \frac{6}{\sqrt{6}}\]
\[ = \sqrt{6} \text{ units }\]
APPEARS IN
RELATED QUESTIONS
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector equation of each one of following planes.
x + y = 3
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the zx - plane .
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,