English

Find a Vector of Magnitude 26 Units Normal to the Plane 12x − 3y + 4z = 1. Answer 15: - Mathematics

Advertisements
Advertisements

Question

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.

Sum

Solution

The given equation of the plane is

\[12x - 3y + 4z = 1\]

` ⇒  \left( x\hat{ i }  +y \hat{ j }+ z \hat{ k}  \right) . \left( \text{ 12}  \hat{ i }  - \text{ 3 }\hat{ j }  + 4 \hat{ k }  \right) = 1 `

`    ⇒  \vec{r} . \left( \text{ 12 } \hat{ i }  - \text{ 3 }\hat{ j } + 4\hat{ k} \right) = 1,\text{  which is the vector equation of the plane.}` 

`\text{ Because the vector equation of the plane is } \vec{r} . \vec{n} = \vec{a} . \vec{n} )`

`\text{ So, the normal vector, }\vec{n} = \text{ 12 }\hat{ i } - \text{ 3 }\hat{ j } + 4\hat{ k }`

\[\left| \vec{n} \right| = \sqrt{144 + 9 + 16} = 13\]

`\text{ Unit vector parallel to }\vec{n} = \frac{\vec{n}}{| \vec{n} |} = \frac{\text{ 12 }\hat{ i } - \text{ 3 }\hat{ j } + 4 \hat{ k }}{13}`

So, the vector of magnitude 26 units normal to the plane

`= 26 \times \frac{\text{ 12 } \hat{ i } - \text{ 3 }\hat{ j} + 4\hat{ k }}{13}`

`= 2 \left( \text{ 12 }\hat{ i }- \text{ 3 }\hat{ j } + 4 \hat{ k } )`

`= \text{ 24 }\hat{ i } - \text{ 6 }\hat{ i } + 8 \hat{ k } `

\[\]

\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.03 [Page 14]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.03 | Q 15 | Page 14

RELATED QUESTIONS

Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the general equation of a plane parallel to X-axis.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.


Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×