Advertisements
Advertisements
Question
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Solution
\[\text{ The given equation of the plane is } \]
\[2x + 2y + 2z = 8\]
\[ \Rightarrow \left( \text{ x } \hat{i} + \text{ y }\hat{j}+ z \hat{k} \right) . \left( \text{ 2 }\hat{i} + \text{ 2 } \hat{j} + 2 \hat{k} \right) = 8\]
\[ \Rightarrow \vec{r} . \left( \text{ 2 } \hat{i} + \text{ 2 }\hat{j} + 2 \hat{k} \right) = 8, \text{ which is the vector equation of the plane } .\]
\[( \text{ Because the vector equation of the plane is } \vec{r} . \vec{n} = \vec{a} . \vec{n} ,\]
\[\text{ where the normal to the plane } , \vec{n} = \text{ 2 } \hat{i} + \text{ 2 }\hat{j} + 2 \hat{k} . )\]
\[\left| \vec{n} \right| = \sqrt{4 + 4 + 4} = 2 \sqrt{3}\]
\[\text{ So, the unit vector perpendicular to } \vec{n} =\frac{\vec{n}}{\left| \vec{n} \right|}=\frac{ \text{ 2 }\hat{i} + \text{ 2 }\hat{j} + 2 \hat{k} }{2 \sqrt{3}}=\frac{1}{\sqrt{3}} \hat{i} +\frac{1}{\sqrt{3}} \hat{j} +\frac{1}{\sqrt{3}} \hat{k} \]
\[\text{ So, thedirection cosines of the normal to the plane are } l = \frac{1}{\sqrt{3}}, m = \frac{1}{\sqrt{3}}, n = \frac{1}{\sqrt{3}}\]
\[\text{ Let } \alpha, \beta \text{ and } \gamma \text{ be the angles made by the given plane with the coordinate axes } .\]
\[\text{ Then } ,\]
\[l = \cos \alpha = \frac{1}{\sqrt{3}}; m = \cos \beta = \frac{1}{\sqrt{3}}; n = \cos \gamma = \frac{1}{\sqrt{3}}\]
\[ \Rightarrow \cos \alpha = \cos \beta = \cos \gamma\]
\[ \Rightarrow \alpha = \beta = \gamma\]
\[\text{ So, the given plane is equally inclined to the coordinate axes } .\]
APPEARS IN
RELATED QUESTIONS
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]
Find the vector equations of the coordinate planes.
Find the vector equation of each one of following planes.
x + y − z = 5
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is