English

Find the Vector Equation of the Line Passing Through (1, 2, 3) and Perpendicular to the Plane → R ⋅ ( ^ I + 2 ^ J − 5 ^ K ) + 9 = 0 . - Mathematics

Advertisements
Advertisements

Question

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 
Sum

Solution

\[ \text{ Let a, b, c be the direction ratios of the given line.} \]

\[ \text{ Since the line passes through the point (1, 2, 3) is } ,\]

\[\frac{x - 1}{a} = \frac{y - 2}{b} = \frac{z - 3}{c} . . . \left( 1 \right)\]

\[\text{ Since this line is perpendicular to the plane } \vec{r} .\left( \hat{i} + 2 \hat{j}  - 5 \hat{k}  \right)+ \text{ 9 = 0 or x + 2y - 5z + 9 = 0, the line is parallel to the normal of the plane } .\]

\[\text{ So, the direction ratios of the line are proportional to the direction ratios of the given plane. } \]

\[\text{ So, } \frac{a}{1} = \frac{b}{2} = \frac{c}{- 5} = \lambda\]

\[ \Rightarrow a = \lambda; b = 2\lambda; c = - 5\lambda\]

\[\text{ Substituting these values in (1), we get } \]

\[\frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z - 2}{- 5}, \text{ which is the Cartesian form of the line } .\]

\[\text{ Vector form } \]

\[\text{ The given line passes through a point whose position vector is }  \vec{a} = \hat{i}  + 2 \hat{j}  + 3 \hat{k} \text{ and is parallel to the vector } \vec{b} = \hat{i}  + 2 \hat{j}  - 5 \hat{k}  . \text{ So, its equation in vector form is } \]

\[ r^\to = \vec{a} + \lambda \vec{b} \]

\[ \Rightarrow \vec{r} = \left( \hat{i}  + 2 \hat{j} + 3 \hat{k}  \right) + \lambda\left( \hat{i}  + 2 \hat{j} - 5 \hat{k}  \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.11 [Page 62]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.11 | Q 21 | Page 62

RELATED QUESTIONS

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equations of the coordinate planes.

 

Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.

 

Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the general equation of a plane parallel to X-axis.

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×