Advertisements
Advertisements
प्रश्न
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
उत्तर
\[ \text{ Let a, b, c be the direction ratios of the given line.} \]
\[ \text{ Since the line passes through the point (1, 2, 3) is } ,\]
\[\frac{x - 1}{a} = \frac{y - 2}{b} = \frac{z - 3}{c} . . . \left( 1 \right)\]
\[\text{ Since this line is perpendicular to the plane } \vec{r} .\left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right)+ \text{ 9 = 0 or x + 2y - 5z + 9 = 0, the line is parallel to the normal of the plane } .\]
\[\text{ So, the direction ratios of the line are proportional to the direction ratios of the given plane. } \]
\[\text{ So, } \frac{a}{1} = \frac{b}{2} = \frac{c}{- 5} = \lambda\]
\[ \Rightarrow a = \lambda; b = 2\lambda; c = - 5\lambda\]
\[\text{ Substituting these values in (1), we get } \]
\[\frac{x - 1}{1} = \frac{y + 1}{2} = \frac{z - 2}{- 5}, \text{ which is the Cartesian form of the line } .\]
\[\text{ Vector form } \]
\[\text{ The given line passes through a point whose position vector is } \vec{a} = \hat{i} + 2 \hat{j} + 3 \hat{k} \text{ and is parallel to the vector } \vec{b} = \hat{i} + 2 \hat{j} - 5 \hat{k} . \text{ So, its equation in vector form is } \]
\[ r^\to = \vec{a} + \lambda \vec{b} \]
\[ \Rightarrow \vec{r} = \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) + \lambda\left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the distance of the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
The locus represented by xy + yz = 0 is ______.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is: