हिंदी

Find the vector equation of the plane which contains the line of intersection of the planes vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`

योग

उत्तर

The equations of the given planes are

`vec("r").(hat"i"+2hat"j"+3hat"k")-4=0` .............(1)
`vec("r").(2hat"i"+hat"j"-hat"k")+5=0`  ..............(2)

The equation of the plane passing through the line intersection of the plane given in equation (1) and equation (2) is

`[vec("r").(hat"i"+2hat"j"+3hat"k")-4]+lambda[vec("r").(2hat"i"+hat"j"-hat"k")+5]=0`

`vec("r").[(2lambda+1)hat"i"+(lambda+2)hat"j"+(3-lambda)hat"k"]+(5lambda-4)=0` ....(3)

The plane in equation (3) is perpendicular to the plane, `vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`

∴5(2λ+1) + 3(λ+2) - 6(3-λ) = 0

⇒19λ - 7 = 0

`⇒ lambda =7/19`

Substituting `lambda =7/19` in equation (3), we obtain

`⇒ vec("r").[33/19hat"i" +45/19hat"j"+50/19hat"k"](-41)/19=0`

`⇒ vec("r").(33hat"i" +45hat"j"+50hat"k")-41=0` .............(4)

This is the vector equation of the required plane.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/4/3

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (−2, 2, −1)


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector equation of each one of following planes. 

x + y = 3

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.

 

Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the general equation of a plane parallel to X-axis.

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×