हिंदी

Find the Coordinates of the Foot of the Perpendicular from the Point (1, 1, 2) to the Plane 2x − 2y + 4z + 5 = 0. Also, Find the Length of the Perpendicular. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.

 
योग

उत्तर

\[\text{ Let M be the foot of the perpendicular of the point P (1, 1, 2) in the plane 2x - 2y + 4z + 5 = 0 } \]
\[\text{ Then,PM is normal to the plane. So, the direction ratios of PM are proportional to 2, -2, 4.} \]
\[\text{ Since PM passes through P (1, 1, 2) and has direction ratios proportional to 2, -2 and 4 , equation of PQ is } \]
\[\frac{x - 1}{2} = \frac{y - 1}{- 2} = \frac{z - 2}{4} = r (\text{ say } )\]
\[\text{ Let the coordiantes of M be } \left( 2r + 1, - 2r + 1, 4r + 2 \right).\]
\[\text{ Since M lies in the plane } 2x - 2y + 4z + 5 = 0, \]
\[2 \left( 2r + 1 \right) - 2 \left( - 2r + 1 \right) + 4 \left( 4r + 2 \right) + 5 = 0\]
\[ \Rightarrow 4r + 2 + 4r - 2 + 16r + 8 + 5 = 0\]
\[ \Rightarrow 24r + 13 = 0\]
\[ \Rightarrow r = \frac{- 13}{24}\]
\[\text{ Substituting this in the coordinates of M, we get } \]
\[M = \left( 2r + 1, - 2r + 1, 4r + 2 \right) = \left( 2 \left( \frac{- 13}{24} \right) + 1, - 2 \left( \frac{- 13}{24} \right) + 1, 4 \left( \frac{- 13}{24} \right) + 2 \right) = \left( \frac{- 1}{12}, \frac{25}{12}, \frac{- 1}{6} \right)\]
\[\text{ Now, the length of the perpendicular from P onto the given plane } \]
\[ = \frac{\left| 2 \left( 1 \right) - 2 \left( 1 \right) + 4 \left( 2 \right) + 5 \right|}{\sqrt{4 + 4 + 16}}\]
\[ = \frac{13}{\sqrt{24}} \text{ units } \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.15 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.15 | Q 5 | पृष्ठ ८१

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.


Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×