Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
उत्तर
\[ \text{ Let } A(1, 1, 1),B(1, -1, 1) \text{ and } C(-7, -3, -5) \text{ be the coordinates } .\]
\[\text{ The required plane passes through the point} A(1, 1, 1) \text{ whose position vector is } \vec{a} = \hat{i} + \hat{j} + \hat{k} \text{ and is normal to the vector } \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{AB} \times \vec{AC .} \]
\[\text{ Clearly } , \vec{AB} = \vec{OB} - \vec{OA} = \left( \hat{i} - \hat{j} + \hat{k} \right) - \left( \hat{i} + \hat{j} + \hat{k} \right) = 0 \hat{i} - 2 \hat{j} + 0 \hat{k} \]
\[ \vec{AC} = \vec{OC} - \vec{OA} = \left( - 7 \hat{i} - 3 \hat{j} - 5 \hat{k} \right) - \left( \hat{i} + \hat{j} + \hat{k} \right) = - 8 \hat{i} - 4 \hat{j} - 6 \hat{k} \]
\[ \vec{n} = \vec{AB} × \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\0 & - 2 & 0 \\ - 8 & - 4 & - 6\end{vmatrix} = 12 \hat{i} + 0 \hat{j} - 16 \hat{k} \]
\[\text{ The vector equation of the required plane is }\]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( 12 \hat{i} + 0 \hat{j} - 16 \hat{k} \right) = \left( \hat{i} + \hat{j} + \hat{k} \right) . \left( 12 \hat{i} + 0 \hat{j} - 16 \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left[ 4 \left( 3 \hat{i} - 4 \hat{k} \right) \right] = 12 + 0 - 16\]
\[ \Rightarrow \vec{r} . \left[ 4 \left( 3 \hat{i} - 4 \hat{k} \right) \right] = - 4\]
\[ \Rightarrow \vec{r} . \left( 3 \hat{i} - 4 \hat{k} \right) = - 1\]
\[ \Rightarrow \vec{r} . \left( 3 \hat{i} - 4 \hat{k} \right) + 1 = 0\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equations of the coordinate planes.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the general equation of a plane parallel to X-axis.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are