हिंदी

Find the Equation of the Plane that Bisects the Line Segment Joining the Points (1, 2, 3) and (3, 4, 5) and is at Right Angle to It. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 
योग

उत्तर

\[\text{ The normal is passing through the points A(1, 2, 3) and B(3, 4, 5). So } ,\]
\[ \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =\left( \text{ 3 }\hat{i}  + \text{  4 }\hat{j}  + \text{ 5  }\hat{k}  \right) - \left( \hat{i}  + \text{ 2 }\hat{j}  + \text{ 3 }\hat{k}  \right) = \text{ 2 } \hat{i}  + \text{ 2 }\hat{j}  + \text{ 2  }\hat{k} \]
\[\text{ Mid-point of AB } =\left( \frac{1 + 3}{2}, \frac{2 + 4}{2}, \frac{3 + 5}{2} \right)=\left( 2, 3, 4 \right)\]
\[ \text{ Since the plane passes through } \left( 2, 3, 4 \right), \vec{a} =2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \]
\[\text{ We know that the vector equation of the plane passing through a point }  \vec{a} \text{ and normal to}  \vec { n } \text { is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[\text{ Substituting } \vec{a} = \hat{i} - \hat{j}  + \hat{ k} \text{ and }  \vec{n} = \text{ 4 } \hat{i} + \text{  2 } \hat{j} - \text{ 3 }\hat{k}  , \text{ we get } \]
\[ \vec{r} . \left( \text{ 2 } \hat{i}  + \text{  2 }\hat{j} + \text{ 2 }\hat{k}  \right) = \left( \text{ 2 }\hat{i} + \text{ 3 } \hat{j}  + \text{ 4 } \hat{k}  \right) . \left( \text{ 2 } \hat{i} + \text{  2  }\hat{j}  + \text{ 2 }\hat{k}  \right)\]
\[ \Rightarrow \vec{r} . \left( \text{ 2 } \hat{i}  + \text{ 2 } \hat{j}  + \text{  2 } \hat{k}  \right) = 4 + 6 + 8\]
\[ \Rightarrow \vec{r} . \left( \text{  2 }\hat{i}  + \text{ 2 } \hat{j}  + \text{ 2 } \hat{k}  \right) = 18\]
\[ \Rightarrow \vec{r} . \left[ \text{ 2 }\left( \hat{i} + \hat{j}  + \hat{k}  \right) \right] = 18\] 
\[ \Rightarrow \vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k} \right) = 9\]
\[\text{ Substituting } \vec{r} = \text{ x }\hat{i}  + \text{ y }\hat{j}  + z \hat{k}  \text{ in the vector equation, we get } \]
\[\left( \text{ x }\hat{i}  + \text{ y } \hat{j}  + z \hat{k}  \right) . \left( \hat{i}  + \hat{j}  + \hat{k} \right) = 9\]
\[ \Rightarrow x + y + z = 9\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 29: The Plane - Exercise 29.03 [पृष्ठ १३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 29 The Plane
Exercise 29.03 | Q 12 | पृष्ठ १३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector  \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\] 


Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×