Advertisements
Advertisements
प्रश्न
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
उत्तर
\[\text{ Let Q be the image of the point P (1, 2, -1) in the plane 3x - 5y + 4z = 5 .} \]
\[\text{ Then PQ is normal to the plane. So, the direction ratios of PQ are proportional to 3, -5, 4.} \]
\[\text{ Since PQ passes through P (1, 2, -1) and has direction ratios proportional to 3 , -5, 4, equation of PQ is } \]
\[\frac{x - 1}{3} = \frac{y - 2}{- 5} = \frac{z + 1}{4} = r (\text{ say } )\]
\[\text{ Let the coordinates of Q be } \left( 3r + 1, - 5r + 2, 4r - 1 \right). \text{ Let R be the mid-point of PQ. Then } ,\]
\[R = \left( \frac{3r + 1 + 1}{2}, \frac{- 5r + 2 + 2}{2}, \frac{4r - 1 - 1}{2} \right) = \left( \frac{3r + 2}{2}, \frac{- 5r + 4}{2}, \frac{4r - 2}{2} \right)\]
\[\text{ Since R lies in the plane } 3x - 5y + 4z = 5, \]
\[3 \left( \frac{3r + 2}{2} \right) - 5 \left( \frac{- 5r + 4}{2} \right) + 4 \left( \frac{4r - 2}{2} \right) = 5\]
\[ \Rightarrow 9r + 6 + 25r - 20 + 16r - 8 = 10\]
\[ \Rightarrow 50r - 32 = 0\]
\[ \Rightarrow r = \frac{32}{50} = \frac{16}{25}\]
\[\text{ Substituting the value of r in the coordinates of Q, we get } \]
\[Q = \left( 3r + 1, - 5r + 2, 4r - 1 \right) = \left( 3 \left( \frac{16}{25} \right) + 1, - 5 \left( \frac{16}{25} \right) + 2, 4 \left( \frac{16}{25} \right) - 1 \right) = \left( \frac{73}{25}, \frac{- 6}{5}, \frac{39}{25} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the vector equations of the coordinate planes.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
The locus represented by xy + yz = 0 is ______.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are