Advertisements
Advertisements
Question
Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.
Solution
\[\text{ Let Q be the image of the point P (1, 2, -1) in the plane 3x - 5y + 4z = 5 .} \]
\[\text{ Then PQ is normal to the plane. So, the direction ratios of PQ are proportional to 3, -5, 4.} \]
\[\text{ Since PQ passes through P (1, 2, -1) and has direction ratios proportional to 3 , -5, 4, equation of PQ is } \]
\[\frac{x - 1}{3} = \frac{y - 2}{- 5} = \frac{z + 1}{4} = r (\text{ say } )\]
\[\text{ Let the coordinates of Q be } \left( 3r + 1, - 5r + 2, 4r - 1 \right). \text{ Let R be the mid-point of PQ. Then } ,\]
\[R = \left( \frac{3r + 1 + 1}{2}, \frac{- 5r + 2 + 2}{2}, \frac{4r - 1 - 1}{2} \right) = \left( \frac{3r + 2}{2}, \frac{- 5r + 4}{2}, \frac{4r - 2}{2} \right)\]
\[\text{ Since R lies in the plane } 3x - 5y + 4z = 5, \]
\[3 \left( \frac{3r + 2}{2} \right) - 5 \left( \frac{- 5r + 4}{2} \right) + 4 \left( \frac{4r - 2}{2} \right) = 5\]
\[ \Rightarrow 9r + 6 + 25r - 20 + 16r - 8 = 10\]
\[ \Rightarrow 50r - 32 = 0\]
\[ \Rightarrow r = \frac{32}{50} = \frac{16}{25}\]
\[\text{ Substituting the value of r in the coordinates of Q, we get } \]
\[Q = \left( 3r + 1, - 5r + 2, 4r - 1 \right) = \left( 3 \left( \frac{16}{25} \right) + 1, - 5 \left( \frac{16}{25} \right) + 2, 4 \left( \frac{16}{25} \right) - 1 \right) = \left( \frac{73}{25}, \frac{- 6}{5}, \frac{39}{25} \right)\]
APPEARS IN
RELATED QUESTIONS
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the vector equation of each one of following planes.
2x − y + 2z = 8
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are