English

Find the Reflection of the Point (1, 2, −1) in the Plane 3x − 5y + 4z = 5. - Mathematics

Advertisements
Advertisements

Question

Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Solution

\[\text{ Let Q be the image of the point P (1, 2, -1) in the plane 3x - 5y + 4z = 5 .} \]
\[\text{ Then PQ  is normal to the plane. So, the direction ratios of PQ are proportional to 3, -5, 4.} \]
\[\text{ Since PQ  passes through P (1, 2, -1) and has direction ratios proportional to 3 , -5, 4, equation of PQ is } \]
\[\frac{x - 1}{3} = \frac{y - 2}{- 5} = \frac{z + 1}{4} = r (\text{ say } )\]
\[\text{ Let the coordinates of Q be } \left( 3r + 1, - 5r + 2, 4r - 1 \right). \text{ Let R be the mid-point of PQ. Then } ,\]
\[R = \left( \frac{3r + 1 + 1}{2}, \frac{- 5r + 2 + 2}{2}, \frac{4r - 1 - 1}{2} \right) = \left( \frac{3r + 2}{2}, \frac{- 5r + 4}{2}, \frac{4r - 2}{2} \right)\]
\[\text{ Since R lies in the plane } 3x - 5y + 4z = 5, \]
\[3 \left( \frac{3r + 2}{2} \right) - 5 \left( \frac{- 5r + 4}{2} \right) + 4 \left( \frac{4r - 2}{2} \right) = 5\]
\[ \Rightarrow 9r + 6 + 25r - 20 + 16r - 8 = 10\]
\[ \Rightarrow 50r - 32 = 0\]
\[ \Rightarrow r = \frac{32}{50} = \frac{16}{25}\]
\[\text{ Substituting the value of r in the coordinates of Q, we get } \]
\[Q = \left( 3r + 1, - 5r + 2, 4r - 1 \right) = \left( 3 \left( \frac{16}{25} \right) + 1, - 5 \left( \frac{16}{25} \right) + 2, 4 \left( \frac{16}{25} \right) - 1 \right) = \left( \frac{73}{25}, \frac{- 6}{5}, \frac{39}{25} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 29: The Plane - Exercise 29.15 [Page 81]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 29 The Plane
Exercise 29.15 | Q 2 | Page 81

RELATED QUESTIONS

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of each one of following planes. 

x + y − z = 5

 


Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).


Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]

 


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to  \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]

 


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.


Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.


If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×