Advertisements
Advertisements
Question
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Solution
\[ \text{ The required plane passes through the point } A(a, 0, 0) \text{ whose position vector is } \vec{a} =a \hat{i} + 0 \hat{j} + 0 \hat{k} \text{ and is normal to the vector } \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{AB} \times \vec{AC} . \]
\[ \text{ Clearly, } \vec{AB} = \vec{OB} - \vec{OA} = \left( 0 \hat{i} + b \hat{j} + 0 \hat{k} \right) - \left( a \hat{i} + 0 \hat{j} + 0 \hat{k} \right) = - a \hat{i} + b \hat{j} + 0 \hat{k} \]
\[ \vec{AC} = \vec{OC} - \vec{OA} = \left( 0 \hat{i} + 0 \hat{j} + c \hat{k} \right) - \left( a \hat{i} + 0 \hat{j} + 0 \hat{k} \right) = - a \hat{i} + 0 \hat{j} + c \hat{k} \]
\[ \vec{n} = \vec{AB} \times \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ - a & b & 0 \\ - a & 0 & c\end{vmatrix} =\text{bc } \hat{i} + \text{ ac }\hat{j} + \text{ab } \hat{k} \]
\[ \text{ The vector equation of the required plane is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( \text{ bc }\hat{i} + \text{ac } \hat{j} + \text{ ab } \hat{k} \right) = \left( a \hat{i} + 0 \hat{j} + 0 \hat{ k} \right) . \left( \text{ bc }\hat{i} +\text{ ac }\hat{j} +\text{ ab }\hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \text{bc } \hat{i} + \text{ac }\hat{j} + \text{ab }\hat{k} \right) = abc + 0 + 0\]
\[ \Rightarrow \vec{r} . \left( bc \hat{i} + ac \hat{j} + ab \hat{k} \right) = abc . . . \left( 1 \right)\]
\[\text{ Now } ,\left| \vec{n} \right|=\sqrt{\left( bc \right)^2 + \left( ac \right)^2 + \left( ab \right)^2}=\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}\]
\[ \text{ For reducing (1) to normal form, we need to divide both sides of (1) by } \sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}. \text{ Then, we get } \]
\[ \vec{r} . \left( \frac{bc \hat{i} + ac \hat{j} + ab \hat{k} }{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}} \right) = \frac{abc}{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}, \text{ which is the normal form of plane } (1).\]
\[ \text{ So, the distance of plane (1) from the origin,} \]
\[p = \frac{abc}{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}, \]
\[ \Rightarrow \frac{1}{p} = \frac{\sqrt{b^2 c^2 + a^2 c^2 + a^2 b^2}}{abc}\]
\[ \Rightarrow \frac{1}{p^2} = \frac{b^2 c^2 + a^2 c^2 + a^2 b^2}{a^2 b^2 c^2}\]
\[ \Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the vector equations of the coordinate planes.
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is