Advertisements
Advertisements
Question
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Solution
\[\text{ The required plane passes through the point} P(2, 5, -3) \text{ whose position vector is } \vec{a} =2 \hat{i} +5 \hat{j} -3 \hat{k} \text{ and is normal to the vector} \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{PQ} × \vec{PR .} \]
\[ \text{ Clearly, } \vec{PQ} = \vec{OQ} - \vec{OP} = \left( - 2 \hat{i} - 3 \hat{j} + 5 \hat{k} \right) - \left( 2 \hat{i} + 5 \hat{j} - 3 \hat{k} \right) = - 4 \hat{i} - 8 \hat{j} + 8 \hat{k} \]
\[ \vec{PR} = \vec{OR} - \vec{OP} = \left( 5 \hat{i} + 3 \hat{j} - 3 \hat{k} \right) - \left( 2 \hat{i} + 5 \hat{j} - 3 \hat{k} \right) = 3 \hat{i} - 2 \hat{j} - 0 \hat{k} \]
\[ n^\to = \vec{PQ} \times \vec{PR} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ - 4 & - 8 & 8 \\ 3 & - 2 & 0\end{vmatrix} = 16 \hat{i} + 24 \hat{j} + 32 \hat{k} \]
\[\text{ The vector equation of the required plane is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( 16 \hat{i} + 24 \hat{j} + 32 \hat{k} \right) = \left( 2 \hat{i} +5 \hat{j} -3 \hat{k} \right) . \left( 16 \hat{i} + 24 \hat{j} + 32 \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left[ 8 \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \right] = 32 + 120 - 96\]
\[ \Rightarrow \vec{r} . \left[ 8 \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \right] = 56\]
\[ \Rightarrow \vec{r} . \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) = 7\]
APPEARS IN
RELATED QUESTIONS
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Determine the value of λ for which the following planes are perpendicular to each other.
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the general equation of a plane parallel to X-axis.
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.