Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
उत्तर
\[\text{ The required plane passes through the point} P(2, 5, -3) \text{ whose position vector is } \vec{a} =2 \hat{i} +5 \hat{j} -3 \hat{k} \text{ and is normal to the vector} \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{PQ} × \vec{PR .} \]
\[ \text{ Clearly, } \vec{PQ} = \vec{OQ} - \vec{OP} = \left( - 2 \hat{i} - 3 \hat{j} + 5 \hat{k} \right) - \left( 2 \hat{i} + 5 \hat{j} - 3 \hat{k} \right) = - 4 \hat{i} - 8 \hat{j} + 8 \hat{k} \]
\[ \vec{PR} = \vec{OR} - \vec{OP} = \left( 5 \hat{i} + 3 \hat{j} - 3 \hat{k} \right) - \left( 2 \hat{i} + 5 \hat{j} - 3 \hat{k} \right) = 3 \hat{i} - 2 \hat{j} - 0 \hat{k} \]
\[ n^\to = \vec{PQ} \times \vec{PR} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ - 4 & - 8 & 8 \\ 3 & - 2 & 0\end{vmatrix} = 16 \hat{i} + 24 \hat{j} + 32 \hat{k} \]
\[\text{ The vector equation of the required plane is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \Rightarrow \vec{r} . \left( 16 \hat{i} + 24 \hat{j} + 32 \hat{k} \right) = \left( 2 \hat{i} +5 \hat{j} -3 \hat{k} \right) . \left( 16 \hat{i} + 24 \hat{j} + 32 \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left[ 8 \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \right] = 32 + 120 - 96\]
\[ \Rightarrow \vec{r} . \left[ 8 \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) \right] = 56\]
\[ \Rightarrow \vec{r} . \left( 2 \hat{i} + 3 \hat{j} + 4 \hat{k} \right) = 7\]
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector equation of each one of following planes.
x + y = 3
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the general equation of a plane parallel to X-axis.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.