मराठी

Find the image of the point (1, 6, 3) in the line x1=y-12=z-23. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.

बेरीज

उत्तर

Let P(1, 6, 3) be the given point and let L be the foot of perpendicular from P to the given line.

The coordinates of a general point on the given line are

`(x - 0)/1 = (y - 1)/2 = (z - 2)/3 = lambda`

i.e., x = λ, y = 2λ + 1, z = 3λ + 2.

If the coordinates of L are (λ, 2λ + 1, 3λ + 2), then the direction ratios of PL are λ – 1, 2λ – 5, 3λ – 1.

But the direction ratios of given line which is perpendicular to PL are 1, 2, 3.

Therefore, (λ – 1)1 + (2λ – 5)2 + (3λ – 1)3 = 0, which gives λ = 1.

Hence coordinates of L are (1, 3, 5).

Let Q(x1, y1, z1) be the image of P(1, 6, 3) in the given line.

Then L is the mid-point of PQ.

Therefore, `(x_1 + 1)/2` = 1

`(y_1 + 6)/2` = 3

`(z_1 + 3)/2` = 5

⇒ x1 = 1, y1 = 0, z1 = 7

Hence, the image of (1, 6, 3) in the given line is (1, 0, 7).

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Solved Examples [पृष्ठ २३०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Solved Examples | Q 12 | पृष्ठ २३०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Find the vector equation of the plane passing through the points \[3 \hat{i}  + 4 \hat{j}  + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k}  \text{ and }  7 \hat{i}  + 6 \hat{k}  .\]

 

Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.

 

Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Write the general equation of a plane parallel to X-axis.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the distance of the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + 2 \hat{k} \right) = 12\] from the origin.

  

Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×