Advertisements
Advertisements
प्रश्न
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
उत्तर
\[a \left( x - 2 \right) + b \left( y - 2 \right) + c \left( z - 1 \right) = 0 . . . \left( 1 \right)\]
\[ \text{ It is given that (1) is passing through (9, 3, 6). So,} \]
\[a \left( 9 - 2 \right) + b \left( 3 - 2 \right) + c \left( 6 - 1 \right) = 0\]
\[ \Rightarrow 7a + b + 5c = 0 . . . \left( 2 \right)\]
\[ \text{ It is given that (1) is perpendicular to the plane 2x + 6y + 6z = 1 . So,}\]
\[2a + 6b + 6c = 0\]
\[ \Rightarrow a + 3b + 3c = 0 . . . \left( 3 \right)\]
\[ \text{ Solving (1), (2) and (3), we get } \]
\[\begin{vmatrix}x - 2 & y - 2 & z - 1 \\ 7 & 1 & 5 \\ 1 & 3 & 3\end{vmatrix} = 0\]
\[ \Rightarrow - 12 \left( x - 2 \right) - 16 \left( y - 2 \right) + 20 \left( z - 1 \right) = 0\]
\[ \Rightarrow 3 \left( x - 2 \right) + 4 \left( y - 2 \right) - 5 \left( z - 1 \right) = 0\]
\[ \Rightarrow 3x + 4y - 5z = 9\]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the vector equation of each one of following planes.
2x − y + 2z = 8
Find the vector equation of each one of following planes.
x + y − z = 5
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The locus represented by xy + yz = 0 is ______.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,