मराठी

Write the Intercept Cut off by the Plane 2x + Y − Z = 5 on X-axis. - Mathematics

Advertisements
Advertisements

प्रश्न

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

उत्तर

\[\text{ Forx- interecept, put y= 0 and z= 0 in the given equation. Then, we get } \]
\[2x + 0 - 0 = 5\]
\[ \Rightarrow 2x = 5\]
\[ \Rightarrow x = \frac{5}{2}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Very Short Answers [पृष्ठ ८४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Very Short Answers | Q 18 | पृष्ठ ८४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

x + y − z = 5

 


The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane


Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]

 


Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 

Find the equation of the plane passing through (abc) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k}  \right) = 2 .\]

 

Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j}  - 5 \hat{k}  \right) + 9 = 0 .\]

 

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Find the vector equation of the plane, passing through the point (abc) and parallel to the plane \[\vec{r} . \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2\]

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×