मराठी

Find the Image of the Point with Position Vector 3 ^ I + ^ J + 2 ^ K in the Plane → R ⋅ ( 2 ^ I − ^ J + ^ K ) = 4 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 
बेरीज

उत्तर

\[ \text{ Let Q be the image of the point P }  (3 \hat{i}  + \hat{j} +2 \hat{k}  ) \text{ in the plane }  \vec{r .} \left( 2 \hat{i} - \hat{j}  + \hat{k} \right)= 4\]

\[\text{ Since PQ passes through P and is normal to the given plane, it is parallel to the normal vector } 2 \hat{i} - \hat{j} + \hat{k} . \text{ So, the equation of PQ is } \]

\[ \vec{r} = \left( 3 \hat{i} + \hat{j} +2 \hat{k}  \right) + \lambda \left( 2 \hat{i}  - \hat{j}  + \hat{k}  \right)\]

\[\text{ As Q lies on PQ, let the position vector of Q be} \left( 3 + 2\lambda \right) \hat{i}  +\left( 1 - \lambda \right) \hat{j}  +\left( 2 + \lambda \right) \hat{k}  .\]

\[\text{ Let R be the mid-point of PQ. Then, the position vector of R is} \]

\[\frac{\left[ \left( 3 + 2\lambda \right) \hat{i}  +\left( 1 - \lambda \right) \hat{j}  +\left( 2 + \lambda \right) \hat{k } \right]+\left[ 3 \hat{i}  + \hat{j} +2 \hat{k} \right]}{2}\]

\[=\frac{\left( 6 + 2\lambda \right) \hat{i} + \left( 2 - \lambda \right) \hat{j} + \left( 4 + \lambda \right) \hat{k} }{2}\]

\[ = \left( 3 + \lambda \right) \hat{i} + \left( 1 - \frac{\lambda}{2} \right) \hat{j} + \left( 2 + \frac{\lambda}{2} \right) \hat{k}  \]

\[ \text{ Since R lies in the plane }  \vec{r .} \left( 2 \hat{i}  - \hat{j} + \hat{k}  \right)= 4,\]

\[\left[ \left( 3 + \lambda \right) \hat{i}  + \left( 1 - \frac{\lambda}{2} \right) \hat{j}  + \left( 2 + \frac{\lambda}{2} \right) \hat{k}  \right] . \left( 2 \hat{i}  - \hat{j}  + \hat{k}  \right)= 4\]

\[ \Rightarrow 6 + 2\lambda - 1 + \frac{\lambda}{2} + 2 + \frac{\lambda}{2} = 4\]

\[ \Rightarrow 7 + 2\lambda + \frac{\lambda}{2} + \frac{\lambda}{2} = 4\]

\[ \Rightarrow 14 + 6 \lambda = 8\]

\[ \Rightarrow 6 \lambda = 8 - 14\]

\[ \Rightarrow \lambda = - 1\]

\[\text{ Putting } \lambda = - 1\text{  in Q, we get }  \]

\[Q = \left( 3 + 2( - 1) \right) \hat{i}  +\left( 1 - ( - 1) \right) \hat{j}  +\left( 2 + ( - 1) \right) \hat{k}  \]

\[ = \hat{i}  + 2 \hat{j}  + \hat{k}  \text{ or } (1, 2, 1)\]

\[\text{ Therefore, by putting } \lambda = - \text{ 1 in R, we get} \]

\[R = \left( 3 + ( - 1) \right) \hat{i} + \left( 1 - \frac{( - 1)}{2} \right) \hat{j}  + \left( 2 + \frac{( - 1)}{2} \right) \hat{k}  \]

\[ = 2 \hat{i}  + \frac{3}{2} \hat{j}  + \frac{3}{2} \hat{k}  \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.15 [पृष्ठ ८१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.15 | Q 4 | पृष्ठ ८१

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the Cartesian form of the equation of a plane whose vector equation is 

  \[\vec{r} \cdot \left( - \hat{i} + \hat{j}  + 2 \hat{k} \right) = 9\]

 


Find the vector equations of the coordinate planes.

 

Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector equation of each one of following planes. 

x + y = 3

 

Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).


Determine the value of λ for which the following planes are perpendicular to each other.

\[\vec{r} \cdot \left( \hat{i}  + 2 \hat{j} + 3 \hat{k} \right) = 7 \text{ and }  \vec{r} \cdot \left( \lambda \hat{i} + 2 \hat{j}  - 7 \hat{k}  \right) = 26\]

 


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the vector equation of the line through the origin which is perpendicular to the plane  \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j}  + 3 \hat{k}  \right) = 3 .\]

 

Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.

 

Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the vector equation of the plane with intercepts 3, –4 and 2 on xy and z-axis respectively.

 


Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`

hence, find whether the lines intersect or not


Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×