Advertisements
Advertisements
प्रश्न
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
उत्तर
\[\text{ Let M be the foot of the perpendicular of the point P(2, 3, 7) in the plane 3x - y - z = 7 } . \]
\[\text{ Then,PM is normal to the plane. So, the direction ratios of PM are proportional to 3, -1, -1.} \]
\[\text{ Since PM passes through P (2, 3, 7) and has direction ratios proportional to 3, -1 and -1 , equation of PQ is } \]
\[\frac{x - 2}{3} = \frac{y - 3}{- 1} = \frac{z - 7}{- 1} = r (\text{ say} )\]
\[\text{ Let the coordinates of M be} \left( 3r + 2, - r + 3, - r + 7 \right).\]
\[\text{ Since M lies in the plane } 3x - y - z = 7, \]
\[3 \left( 3r + 2 \right) - \left( - r + 3 \right) - \left( - r + 7 \right) = 7\]
\[ \Rightarrow 9r + 6 + r - 3 + r - 7 = 7\]
\[ \Rightarrow 11r = 11\]
\[ \Rightarrow r = 1\]
\[\text{ Substituting this in the coordinates of M, we get } \]
\[M = \left( 3r + 2, - r + 3, - r + 7 \right) = \left( 3 \left( 1 \right) + 2, - 1 + 3, - 1 + 7 \right) = \left( 5, 2, 6 \right)\]
\[\text{ Now, the length of the perpendicular from P onto the given plane } \]
\[ = \frac{\left| 3 \left( 2 \right) - 3 - 7 - 7 \right|}{\sqrt{9 + 1 + 1}}\]
\[ = \frac{11}{\sqrt{11}}\]
\[ = \sqrt{11} \text{ units } \]
APPEARS IN
संबंधित प्रश्न
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]
Find the vector equation of each one of following planes.
2x − y + 2z = 8
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are