मराठी

Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: andx-83=y+19-16=z-107andx-153=y-298=z-5-5 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines: 

`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`

बेरीज

उत्तर

Let us assume the required line

`vecr = hati + 2hatj - 4hatk + λ(b_1hati + b_2hatj + b_3hatk)`      .....(i)

The lines `(x - 8)/3 = (y + 19)/-16 = (z -10)/7` and `vecr = hati + 2hatj - 4hatk + λ(b_1hati + b_2hatj + b_3hatk)` are perpendicular to each other.

The direction ratios of these lines are 3, −16, 7 and b1, b2, b3. These lines are perpendicular to each other if

3b1 − 16b2 + 7b3 = 0               .....(ii) 

Similarly, the direction ratios of the lines `(x -15)/3 = (y - 29)/8 = (z - 5)/-5` and `vecr = hati + 2hatj - 4hatk + λ(b_1hati + b_2hatj + b_3hatk)` are 3, 8, −5 and b1, b2, b3 are mutually perpendicular.

∴ 3b1 + 8b2 − 5b3 = 0                   .....(iii)

From equations (ii) and (iii),

`b_1/(80 - 56) = b_2/(21 + 15) = b_3/(24 + 18)`

and `b_1/24 = b_2/36 = b_3/72`

`"b"_1/2 = "b"_2/3 = "b"_3/6`

Putting the proportional values ​​of b1, b2, b3  (i) 

`vecr = hati + 2hatj - 4hatk + λ(2hati + 3hatj + 6hatk)`

This is the equation of the required line.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise 11.4 [पृष्ठ ४९९]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise 11.4 | Q 20 | पृष्ठ ४९९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equations of the planes that passes through three points.

(1, 1, −1), (6, 4, −5), (−4, −2, 3)


Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the vector equation of each one of following planes. 

x + y − z = 5

 


The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.

 

A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i}  + 3 \hat{j}  + 4 \hat{k} \] to the plane  \[\vec{r} . \left( 2 \hat{i} + \hat{j}  + 3 \hat{k}  \right) - 26 = 0\] Also find image of P in the plane.

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.


Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane  \[\vec{r} . \vec{n} = 0 .\]


Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.


Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.


Find the coordinates of the foot of the perpendicular Q  drawn from P(3, 2, 1) to the plane 2x − y + z + 1 = 0. Also, find the distance PQ and the image of the point P treating this plane as a mirror

Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).


Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×