Advertisements
Advertisements
प्रश्न
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
उत्तर
For the unit vector perpendicular to the given plane, we need to convert the given equation of plane into normal form.
\[\text{ The given equation of the plane is } \]
\[ \vec{r} . \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\]
\[ \Rightarrow \vec{r} . \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) = - 1\]
\[ \Rightarrow \vec{r} . \left( - 6 \hat{i} + 3 \hat{j} + 2 \hat{k} \right) = 1 . . . \left( 1 \right)\]
\[Now,\sqrt{\left( - 6 \right)^2 + 3^2 + 2^2}=\sqrt{36 + 9 + 4}= 7\]
\[\text{ Dividing (1) by 7, we get} \]
\[ \vec{r} . \left( \frac{- 6}{7} \hat{ i} + \frac{3}{7} \hat{j} + \frac{2}{7} \hat{k} \right) = \frac{1}{7}, \text{ which is in the normal form } \vec{r} . \vec{n} =d, \]
\[\text{ where the unit vector normal to the given plane } , \vec{n} = \frac{- 6}{7} \hat{i} + \frac{3}{7} \hat{j} + \frac{2}{7} \hat{k} \]
\[\text{ So, its direction cosines are } \frac{- 6}{7},\frac{3}{7},\frac{2}{7}\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equation of each one of following planes.
x + y − z = 5
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.
Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the zx - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
The locus represented by xy + yz = 0 is ______.