Advertisements
Advertisements
प्रश्न
उत्तर
The given equation of the plane is 2x - y + z + 1 = 0
A foot of the perpendicular is given by
`("x"-"x"_1)/"a"=("y"-"y"_1)/"b"=("z"-"z"_1)/"c"=-(("ax"_1+"by"_1+"cz"_1-"d"))/("a"^1+"b"^2+"c"^2)`
Therefore, foot of perpendicular Q from point P(3,2,1) to the given plane is given by
`("x"-3)/2=("y"-2)/-1=("z"-1)/1=-((2xx3+(-1)xx2+1xx1+1))/(2^2+(-1)+1^2)=-1`
⇒ x = 1, y = 3, z = 0
Hence, coordinates of foot of perpendicular Q are (1, 3, 0).
Distance PQ`=|((2xx3+(-1)xx1+1xx1+1))/(sqrt(2^2+(-1) ^2 +1^2))|=sqrt6`
Image of the point P is given by
`("x"-"x"_1)/"a"=("y"-"y"_1)/"b"=("z"-"z"_1)/"c"=-(2("ax"_1+"by"_1+"cz"_1-"d"))/("a"^2+"b"^2+"c"^2)`
Therefore, coordinates of image of the point P are given by
`("x"-3)/2=("y"-2)/-1=("z"-1)/1=-(2[(2xx3+(-1)xx2+1xx1+1)])/(2^2+(-1)^2+1^2)=-2`
⇒ x = - 1, y = 4, z = - 1
Hence, coordinates of image of P are (-1, 4, -1)
APPEARS IN
संबंधित प्रश्न
Find the vector equation of the line passing through the point (1, 2, − 4) and perpendicular to the two lines:
`(x -8)/3 = (y+19)/(-16) = (z - 10)/7 and (x - 15)/3 = (y - 29)/8 = (z- 5)/(-5)`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( - \hat{i} + \hat{j} + 2 \hat{k} \right) = 9\]
Find the vector equations of the coordinate planes.
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} - 5 \hat{k} \right) + 9 = 0 .\]
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the general equation of a plane parallel to X-axis.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`
The locus represented by xy + yz = 0 is ______.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are