Advertisements
Advertisements
प्रश्न
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
उत्तर
\[ \text { The normal is passing through the points A(1, 4, 2) and B (2, 3, 5). }\]
\[\text{ So } , \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =\left(\text{ 2 } \hat{i} +\text{ 3 } \hat{j} + \text{ 5 }\hat{k} \right) - \left( \hat{i} + \text{ 4 }\hat{j} +\text{ 2 } \hat{k} \right) = \hat{i} - \hat{j} + \text{ 3 }\hat{k} \]
\[ \text{ We know that the vector equation of the plane passing through a point } (1, 2, 1) ( \vec{a} ) \text{ and normal to } \vec{n} \text{ is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[ \text{ Substituting } \vec{a} = \hat{i} +\text{ 2 } \hat{j} + \hat{k} \text{ and } \vec{n} = \hat{i} - \hat{j} + \text{ 3 } \hat{k} , \text{ we get } \]
\[ \vec{r} . \left( \hat{i} - \hat{j} +\text{ 3 } \hat{k} \right) = \left( \hat{i} +\text{ 2 } \hat{j} + \hat{k} \right) . \left( \hat{i} - \hat{j} + \text{ 3 } \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \hat{i} - \hat{j} +\text{ 3 } \hat{k} \right) = 1 - 2 + 3\]
\[ \Rightarrow \vec{r} . \left( \hat{i} - \hat{j} + \text{ 3 }\hat{k} \right) = 2 . . . \left( 1 \right)\]
\[ \text{ To find the perpendicular distance of this plane from the origin, we have to reduce this to normal form } .\]
\[ \text{ We have } \vec{n} = \hat{i} - \hat{j} + \text{ 3 } \hat{k} ; \left| \vec{n} \right| = \sqrt{1 + 1 + 9} = \sqrt{11}\]
\[ \text{ Dividing (1) by } \sqrt{11}, \text{ we get } \]
\[ \vec{r} . \left( \frac{1}{\sqrt{11}} \hat{i} - \frac{1}{\sqrt{11}} \hat{j} + \frac{3}{\sqrt{11}} \hat{k} \right) = \frac{2}{\sqrt{11}}, \text{ which is the normal form of plane } (1).\]
\[ \text{ So, the perpendicular distance of plane (1) from the origin } =\frac{2}{\sqrt{11}}\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector equation of each one of following planes.
2x − y + 2z = 8
Find the vector equation of each one of following planes.
x + y − z = 5
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Show that the normals to the following pairs of planes are perpendicular to each other.
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
Determine the value of λ for which the following planes are perpendicular to each ot
2x − 4y + 3z = 5 and x + 2y + λz = 5
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the distance of the point (1, −2, 3) from the plane x − y + z = 5 measured along a line parallel to \[\frac{x}{2} = \frac{y}{3} = \frac{z}{- 6} .\]
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).
Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.
Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Write the position vector of the point where the line \[\vec{r} = \vec{a} + \lambda \vec{b}\] meets the plane \[\vec{r} . \vec{n} = 0 .\]
Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the plane which contains the line of intersection of the planes `vec("r").(hat"i"+2hat"j"+3hat"k"),-4=0, vec("r").(2hat"i"+hat"j"-hat"k")+5=0`and which is perpendicular to the plane`vec("r").(5hat"i"+3hat"j"-6hat"k"),+8=0`
Find the co-ordinates of the foot of perpendicular drawn from the point A(1, 8, 4) to the line joining the points B(0, –1, 3) and C(2, –3, –1).
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
The locus represented by xy + yz = 0 is ______.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.