मराठी

Find the Vector Equation of the Plane Which is at a Distance of 6 √ 29 from the Origin and Its Normal Vector from the Origin is 2 ^ I − 3 ^ J + 4 ^ K . Also, Find Its Cartesian Form. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the vector equation of the plane which is at a distance of \[\frac{6}{\sqrt{29}}\] from the origin and its normal vector from the origin is  \[2 \hat{i} - 3 \hat{j} + 4 \hat{k} .\] Also, find its Cartesian form. 

 
बेरीज

उत्तर

`\text{ Given, normal vector } , \vec{n} =\text{  2 } \hat{i} - \text{  3 }\hat{j}  +\text{   4 \hat{k}  `

\[\text{ Now } , \hat{n}  = \frac{\vec{n}}{\left| \vec{n} \right|} = \frac{2 \hat{i}  - \text{  3  }\hat{j}  +\text{   4 }\hat{k} }{\sqrt{4 + 9 + 16}} = \frac{2 \hat{i}  - \text{  3 }\hat{j} + 4 \hat{k} }{\sqrt{29}} = \frac{2}{\sqrt{29}} \hat{i}  - \frac{3}{\sqrt{29}} \hat{j} + \frac{4}{\sqrt{29}} \hat{k}  \]

\[ \text{ The equation of the plane in normal form is } \]

\[ \vec{r} . \hat{n}  =\text{   d }(\text{ where d is the distance of the plane from the origin } )\]

\[\text{ Substituting, } \hat{n} =\frac{2}{\sqrt{29}} \hat{i}  - \frac{3}{\sqrt{29}} \hat{j}  + \frac{4}{\sqrt{29}} \hat{k}  \text{ and } d=\frac{6}{\sqrt{29}} \text{ here, we get } \]

\[ \vec{r} . \left( \frac{2}{\sqrt{29}} \hat{i} - \frac{3}{\sqrt{29}} \hat{j} + \frac{4}{\sqrt{29}} \hat{k} \right) = \frac{6}{\sqrt{29}} . . . (1)\]

\[ \text{ Cartesian form } \]

\[\text{ For Cartesian form, substituting }  \vec{r} =x \hat{i}  + y \hat{j} + z \hat{k}  \text{ in (1), we get } \]

\[\left( x \hat{i} + y \hat{j} + z \hat{k} \right) . \left( \frac{2}{\sqrt{29}} \hat{i}  - \frac{3}{\sqrt{29}} \hat{j}  + \frac{4}{\sqrt{29}} \hat{k}  \right) = \frac{6}{\sqrt{29}}\]

\[ \Rightarrow \frac{2x - 3y + 4z}{\sqrt{29}} = \frac{6}{\sqrt{29}}\]

\[ \Rightarrow 2x - 3y + 4z = 6\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.04 [पृष्ठ १९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.04 | Q 10 | पृष्ठ १९

संबंधित प्रश्‍न

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y – z = 5


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0


Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.


If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (­−4, 3, −6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


Find the coordinates of the point where the line through the points (3, - 4, - 5) and (2, - 3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2,- 3) and (0, 4, 3)


If the axes are rectangular and P is the point (2, 3, −1), find the equation of the plane through P at right angles to OP.

 

Reduce the equation \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.

 


Write the normal form of the equation of the plane 2x − 3y + 6z + 14 = 0.

 

The direction ratios of the perpendicular from the origin to a plane are 12, −3, 4 and the length of the perpendicular is 5. Find the equation of the plane. 


Find the equation of a plane which is at a distance of \[3\sqrt{3}\]  units from the origin and the normal to which is equally inclined to the coordinate axes.

 

Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.

 

Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.


Prove that the line of section of the planes 5x + 2y − 4z + 2 = 0 and 2x + 8y + 2z − 1 = 0 is parallel to the plane 4x − 2y − 5z − 2 = 0.

 

Write the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  - 6 \hat{k}  \right) = 14\]  in normal form.

 
 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Write the vector equation of the line passing through the point (1, −2, −3) and normal to the plane \[\vec{r} \cdot \left( 2 \hat{i} + \hat{j}  + 2 \hat{k}  \right) = 5 .\]

 

Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


The equations of x-axis in space are ______.


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


What will be the cartesian equation of the following plane. `vecr * (hati + hatj - hatk)` = 2


In the following cases find the c9ordinates of foot of perpendicular from the origin `2x + 3y + 4z - 12` = 0


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×