मराठी

Find the Coordinates of the Point Where the Line Through the Points (3, - 4, - 5) and (2, - 3, 1), Crosses the Plane Determined by the Points (1, 2, 3), (4, 2,- 3) and (0, 4, 3) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point where the line through the points (3, - 4, - 5) and (2, - 3, 1), crosses the plane determined by the points (1, 2, 3), (4, 2,- 3) and (0, 4, 3)

उत्तर १

Equation of the line passing through (3, – 4, – 5) and (2, – 3, 1) is

⇒ (x - 1)(12) + (y - 2)6 + (z - 3)6 = 0

12x - 12 + 6y - 12 + 6z -18 = 0

12x + 6y + 6z - 42 = 0

2x + y + z - 7 = 0

2(-λ + 3) + 1(λ - 4) + (6λ - 5) - 7 = 0

- 2λ + 6 + λ - 4 + 6λ - 5 -7 = 0

5λ = 10 ⇒ λ = 2

∴ x = -2 +3, y = 2 - 4, z= 12 - 5

∴ x = 1, y = -2, z = 7

∴ Intersection point is (1,-2,7)

shaalaa.com

उत्तर २

We know that the cartesian equation of a line passing through two points  (x1, y1, z1) 

and (x2, y2, z2)is given by

`(x - x_1)/(x_2 - x_1) = (y - y_1)/(y_2 - y_1) = (z - z_1)/(z_2 -  z_1)`

So, the equation of a line passing through (3, –4, –5) and (2, –3, 1) is

`(x-3)/(2-3) = (y-(-4))/(-3-(-4)) = (z -(-5))/(1-(-5))`

`=> (x - 3)/(-1) = (y - (-4))/1 = (z-(-5))/6`

`=> (x - 3)/(-1) = (y+4)/1 = (z+5)/6`

Now, the coordinates of any point on this line are given by

`(x-3)/(-1) = (y +4)/1 = (z +5)/6 = k`

⇒ x = 3- k,y = k - 4, z = 6k - 5, where k is a constant

Let R(3 − kk − 4, 6k − 5) be the required point of intersection.

Now,
Let the equation of a plane passing through (1, 2, 3) be 

a(x − 1) + b(y − 2) + c(z − 3) = 0                   .....(1)

Here, abc are the direction ratios of the normal to the plane. 

Since the plane (1) passes through (4, 2, −3), so

a(4 - 1) + b(2 - 2) + c(-3 - 3) = 0

⇒ 3a - 6c = 0 .....(2)

Also, the plane (1) passes through (0, 4, 3), so a(0 - 1) + b(4 - 2) + c(3 - 3) = 0

⇒ -a + 2b = 0 .....(3)

Solving (2) and (3) using the method of cross multiplication, we have

`a/(0 + 12) = b/(6 - 0) = c/(6 + 0)`

`=> a/12 = b/6 = c/6`

⇒ `a/2`= b = c = λ (Say)

⇒ a = 2λ, b = λ, c = λ

From (1), we get

2λ(x1λ(y2λ(z3)=0

⇒ 2+7=0                  .....(4)

Putting 3k, k4, 6k5 in (4), we get

⇒ 2(3 - k(k - 4(6k - 5) - 0

5− 10=0

2

Putting k = 2 in R(3 − kk − 4, 6k − 5), we get

R(3 - k, k - 4, 6k - 5R(3 - 2, 2 - 4, × 2 - 5R(1, -2,7)

Thus, the coordinates of the required point are (1, –2, 7) .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) All India Set 1

संबंधित प्रश्‍न

In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2


In following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y – z = 5


Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the YZ-plane


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX − plane.


Find the coordinates of the point where the line through (3, ­−4, −5) and (2, − 3, 1) crosses the plane 2x + z = 7).


The planes: 2− y + 4z = 5 and 5x − 2.5y + 10z = 6 are

(A) Perpendicular

(B) Parallel

(C) intersect y-axis

(C) passes through `(0,0,5/4)`


Reduce the equation 2x − 3y − 6z = 14 to the normal form and, hence, find the length of the perpendicular from the origin to the plane. Also, find the direction cosines of the normal to the plane. 


Reduce the equation \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 2 \hat{k}  \right) + 6 = 0\] to normal form and, hence, find the length of the perpendicular from the origin to the plane.

 


Write the normal form of the equation of the plane 2x − 3y + 6z + 14 = 0.

 

Find a unit normal vector to the plane x + 2y + 3z − 6 = 0.

 

Find the equation of a plane which is at a distance of \[3\sqrt{3}\]  units from the origin and the normal to which is equally inclined to the coordinate axes.

 

Find the distance of the plane 2x − 3y + 4z − 6 = 0 from the origin.

 

Find the equation of the plane which contains the line of intersection of the planes \[x + 2y + 3z - 4 = 0 \text { and } 2x + y - z + 5 = 0\] and whose x-intercept is twice its z-intercept.


Find the value of λ such that the line \[\frac{x - 2}{6} = \frac{y - 1}{\lambda} = \frac{z + 5}{- 4}\]  is perpendicular to the plane 3x − y − 2z = 7.

 
 

Find the equation of the plane passing through the points (−1, 2, 0), (2, 2, −1) and parallel to the line \[\frac{x - 1}{1} = \frac{2y + 1}{2} = \frac{z + 1}{- 1}\]

 

Write a vector normal to the plane  \[\vec{r} = l \vec{b} + m \vec{c} .\]

 

Write the value of k for which the line \[\frac{x - 1}{2} = \frac{y - 1}{3} = \frac{z - 1}{k}\]  is perpendicular to the normal to the plane  \[\vec{r} \cdot \left( 2 \hat{i}  + 3 \hat{j}  + 4 \hat{k}  \right) = 4 .\]


Find the vector equation of a plane which is at a distance of 5 units from the origin and its normal vector is \[2 \hat{i} - 3 \hat{j} + 6 \hat{k} \] .


If the line drawn from the point (–2, – 1, – 3) meets a plane at right angle at the point (1, – 3, 3), find the equation of the plane.


The plane 2x – 3y + 6z – 11 = 0 makes an angle sin–1(α) with x-axis. The value of α is equal to ______.


The unit vector normal to the plane x + 2y +3z – 6 = 0 is `1/sqrt(14)hat"i" + 2/sqrt(14)hat"j" + 3/sqrt(14)hat"k"`.


Find the vector equation of a plane which is at a distance of 7 units from the origin and which is normal to the vector `3hati + 5hatj - 6hatk`


Find the vector and cartesian equations of the planes that passes through (1, 0, – 2) and the normal to the plane is `hati + hatj - hatk`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×