Advertisements
Advertisements
प्रश्न
Find the vector equation of the plane passing through the points (1, 1, −1), (6, 4, −5) and (−4, −2, 3).
उत्तर
\[ \text{ Let } A(1, 1, -1),B(6, 4, -5) \text{ and } C(-4, -2, 3).\]
\[\text{ The required plane passes through the point } A(1, 1, -1) \text{ whose position vector is } \vec{a} = \hat{i} + \hat{j} - \hat{k} \text{ and is normal to the vector } \vec{n} \text{ given by } \]
\[ \vec{n} = \vec{AB} \times \vec{AC} \]
\[ \text{ Clearly } , \vec{AB} = \vec{OB} - \vec{OA} = \left( 6 \hat{i} + 4 \hat{j} - 5 \hat{k} \right) - \left( \hat{i} + \hat{j} - \hat{k} \right) = 5 \hat{i} + 3 \hat{j} - 4 \hat{k} \]
\[ \vec{AC} = \vec{OC} - \vec{OA} = \left( - 4 \hat{i} - 2 \hat{j} + 3 \hat{k} \right) - \left( \hat{i} + \hat{j} - \hat{k} \right) = - 5 \hat{i} - 3 \hat{j} + 4 \hat{k} \]
\[ \vec{n} = \vec{AB} \ × \vec{AC} = \begin{vmatrix}\hat{i} & \hat{j} & \hat{k} \\ 5 & 3 & - 4 \\ - 5 & - 3 & 4\end{vmatrix} = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0} \]
\[\text{ So, the given points are collinear } .\]
\[\text{ Thus, there will be infinite number of planes passing through these points.} \]
\[\text{ Their equations (passing through (1, 1, -1) are given by } \]
\[a \left( x - 1 \right) + b \left( y - 1 \right) + c \left( z + 1 \right) = 0 . . . \left( 1 \right)\]
\[\text{ Since this passes through B }(6, 4, -5),\]
\[a \left( 6 - 1 \right) + b \left( 4 - 1 \right) + c \left( - 5 + 1 \right) = 0\]
\[ \Rightarrow 5a + 3b - 4c = 0 . . . \left( 2 \right)\]
\[ \text{ From (1) and (2), the equations of the infinite planes are } \]
\[a \left( x - 1 \right) + b \left( y - 1 \right) + c \left( z + 1 \right) = 0, \text{ where } 5a + 3b - 4c = 0 . \]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the vector equations of the coordinate planes.
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
The coordinates of the foot of the perpendicular drawn from the origin to a plane are (12, −4, 3). Find the equation of the plane.
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normals to the following pairs of planes are perpendicular to each other.
x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the image of the point (0, 0, 0) in the plane 3x + 4y − 6z + 1 = 0.
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the general equation of a plane parallel to X-axis.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Find the vector equation of the plane, passing through the point (a, b, c) and parallel to the plane \[\vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the value of λ for which the following lines are perpendicular to each other `("x"-5)/(5λ+2) = (2 -"y")/(5) = (1 -"z")/(-1); ("x")/(1) = ("y"+1/2)/(2λ) = ("z" -1)/(3)`
hence, find whether the lines intersect or not
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is