मराठी

Find the Coordinates of the Point Where the Line Through (5, 1, 6) and (3, 4, 1) Crosses The Yz - Plane . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .

बेरीज

उत्तर

\[ \text{ The equation of the line through the points (5, 1, 6) and (3, 4, 1) is } \]
\[\frac{x - 5}{3 - 5} = \frac{y - 1}{4 - 1} = \frac{z - 6}{1 - 6}\]
\[ \Rightarrow \frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5}\]
\[\text{ The coordinates of any point on this line are of the form} \]
\[\frac{x - 5}{- 2} = \frac{y - 1}{3} = \frac{z - 6}{- 5} = \lambda\]
\[ \Rightarrow x = - 2\lambda + 5; y = 3\lambda + 1; z = - 5\lambda + 6\]
\[\text{ So, the coordinates of the point on the given line } are\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right).\]
\[\text{ Since this point lies on the YZ- plane,} \]
\[x = 0\]
\[ \Rightarrow - 2\lambda + 5 = 0\]
\[ \Rightarrow \lambda = \frac{5}{2}\]
\[\text{ So, the coordinates of the point are} \]
\[\left( - 2\lambda + 5, 3\lambda + 1, - 5\lambda + 6 \right)\]
\[ = \left( - 2 \left( \frac{5}{2} \right) + 5, 3 \left( \frac{5}{2} \right) + 1, - 5 \left( \frac{5}{2} \right) + 6 \right)\]
\[ = \left( 0, \frac{17}{2}, \frac{13}{2} \right)\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.12 [पृष्ठ ६५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.12 | Q 1.1 | पृष्ठ ६५

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the equation of the plane passing through (abc) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`


If the points (1, 1, p) and (−3, 0, 1) be equidistant from the plane `vecr.(3hati + 4hatj - 12hatk)+ 13 = 0`, then find the value of p.


Find the Cartesian form of the equation of a plane whose vector equation is 

 \[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]

 


Find the vector equation of each one of following planes. 

2x − y + 2z = 8


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 


A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normals to the following pairs of planes are perpendicular to each other.

\[\vec{r} \cdot \left( 2 \hat{i}  - \hat{j}  + 3 \hat{k}  \right) = 5 \text{ and }  \vec{r} \cdot \left( 2 \hat{i}  - 2 \hat{j}  - 2 \hat{k}  \right) = 5\]

Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through the points (1, −1, 2) and (2, −2, 2) and which is perpendicular to the plane 6x − 2y + 2z = 9.

 

Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.

 

Find the equation of the plane passing through the points whose coordinates are (−1, 1, 1) and (1, −1, 1) and perpendicular to the plane x + 2y + 2z = 5.

 

Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]

 

Find the equation of the plane through the points (2, 2, −1) and (3, 4, 2) and parallel to the line whose direction ratios are 7, 0, 6.

 

Find the equation of a plane which passes through the point (3, 2, 0) and contains the line  \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .

 


Find the reflection of the point (1, 2, −1) in the plane 3x − 5y + 4z = 5.

 

Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.


Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.

 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane parallel to XOY- plane and passing through the point (2, −3, 5).

 

Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).

 

Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.

 

Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Find the equations of the line passing through the point (3, 0, 1) and parallel to the planes x + 2y = 0 and 3y – z = 0.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


A unit vector perpendicular to the plane ABC, where A, B and C are respectively the points (3, –1, 2), (1, –1, –3) and (4, –3, 1), is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×