Advertisements
Advertisements
प्रश्न
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
उत्तर
\[\text{ We know that the distance of the point } \left( x_1 , y_1 , z_1 \right) \text{ from the plane } ax + by + cz + d = 0 \text{ is given by} \]
\[\frac{\left| a x_1 + b y_1 + c z_1 + d \right|}{\sqrt{a^2 + b^2 + c^2}}\]
\[\text{ So, the required distance} \]
\[ = \frac{\left| 2 \left( 0 \right) - 3 \left( 0 \right) + 6 \left( 0 \right) + 21 \right|}{\sqrt{2^2 + \left( - 3 \right)^2 + 6^2}}\]
\[ = \frac{\left| 21 \right|}{\sqrt{4 + 9 + 36}}\]
\[ = \frac{21}{7}\]
\[ = 3 \text{ units} \]
APPEARS IN
संबंधित प्रश्न
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Find the Cartesian form of the equation of a plane whose vector equation is
\[\vec{r} \cdot \left( 12 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + 5 = 0\]
Find the vector equations of the coordinate planes.
Find the vector equation of each one of following planes.
2x − y + 2z = 8
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector \[\hat{i} - \text{2 } \hat{j} - \text{2 } \hat{k} .\]
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Determine the value of λ for which the following planes are perpendicular to each other.
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Write the equation of the plane parallel to the YOZ- plane and passing through (−4, 1, 0).
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the general equation of a plane parallel to X-axis.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
If O be the origin and the coordinates of P be (1, 2,−3), then find the equation of the plane passing through P and perpendicular to OP.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Prove that the lines x = py + q, z = ry + s and x = p′y + q′, z = r′y + s′ are perpendicular if pp′ + rr′ + 1 = 0.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are