मराठी

If the Line Drawn from (4, −1, 2) Meets a Plane at Right Angles at the Point (−10, 5, 4), Find the Equation of the Plane. - Mathematics

Advertisements
Advertisements

प्रश्न

If the line drawn from (4, −1, 2) meets a plane at right angles at the point (−10, 5, 4), find the equation of the plane.

बेरीज

उत्तर

`\text{ The normal is passing through the points} \text{ A }(4, -1, 2) and \text{  B }(-10, 5, 4). So,  `

`\vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =( \text{ -10 }\hat{ i } +\text{ 5 } \hat{ j } + 4\hat{  k }) - ( 4\hat{ i }- \hat{  j }+ \text{ 2 } \hat{ j } ) = - \text{ 14} \hat{ j } + \text{ 6} \hat{ j } + \text{2 }\hat{ j } `

`\text{ Since the plane passes through } (-10, 5, 4), \vec{a} = \text{- 10} \hat{ i } +\text{ 5 } \hat{ j } + \text{ 4} \hat{ k } `

` \text{ We know that the vector equation of the plane passing through a point } \vec {a} \text{ and normal to } \vec{n} \text{ is } `

\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]

`\text{ Substituting }\vec{a} = -\text{ 10 } \hat{ i } +\text{ 5 } \hat{ j } + \text{ 4 } \hat{ k } and \vec{n} = -\text{ 14 }\hat{ i } +\text{ 6 } \hat{ j } +\text{ 2 } \hat{ k } ,\text{ we get }`

`   \vec{r} . ( - \text{ 14 }\hat{ i } + \text{ 6 } \hat{ j } + \text{ 2 } \hat{ k }  ) = ( -\text{ 10  } \hat{ i } +\text{ 5 } \hat{ j } +\text{ 4 } \hat{ k } ) . ( - \text{ 14 } \hat{ i } + \text{ 6 } \hat{ j } + \text{ 2 } \hat { k }) `

`  ⇒ \vec{r} .( \text{- 14 } \hat{ i }  + \text{ 6 } \hat{ j }  +\text{ 2 } \hat{ k }  ) = 140 + 30 + 8  `

`  ⇒ \vec{r} .  (2  ( \text{ 7 } \hat{ i }  + \text{ 3 } \hat{ j }  + \hat{ k })  ) = 178  `

`  ⇒ \vec{r} .    ( \text{ 7 } \hat{ i }  + \text{ 3 } \hat{ j }  + \hat{ k }  ) = 89`

`\text{ Substituting } \vec{r} = \text{ x } \hat{ i } + \text{ y } \hat{ i } + \text{ z}\hat{k } \text{ in the vector equation, we get }`

` ( \text{ x } \hat{ i } + \text{ y } \hat{ i } + \text{ z}\hat{k } ). \( \text{ 7 } \hat{ i }  + \text{ 3 } \hat{ j }  + \hat{ k }  ) = 89`

\[ \Rightarrow 7x - 3y - z = - 89\]

\[ \Rightarrow 7x - 3y - z + 89 = 0\]

\[\]

\[\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 29: The Plane - Exercise 29.03 [पृष्ठ १४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 29 The Plane
Exercise 29.03 | Q 16 | पृष्ठ १४

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`


Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2+ 3z = 5 and 3x + 3z = 0.


If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Show that the normals to the following pairs of planes are perpendicular to each other. 

x − y + z − 2 = 0 and 3x + 2y − z + 4 = 0 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of a plane which is at a distance of 5 units from the origin and which is normal to the vector  \[\hat{i}  - \text{2 } \hat{j}  -  \text{2 } \hat{k} .\]

 


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Determine the value of λ for which the following planes are perpendicular to each ot

 2x − 4y + 3z = 5 and x + 2y + λz = 5


Find the vector equation of the plane through the points (2, 1, −1) and (−1, 3, 4) and perpendicular to the plane x − 2y + 4z = 10 


Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the  zx - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\]  to the plane \[2x - 2y + 4z + 5 = 0\] .

 

Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained


Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).

 

Write the general equation of a plane parallel to X-axis.

 

Write the value of k for which the planes x − 2y + kz = 4 and 2x + 5y − z = 9 are perpendicular.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the distance between the parallel planes 2x − y + 3z = 4 and 2x − y + 3z = 18.  


Write the equation of the plane  \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\]   in scalar product form.

 

Write the intercept cut off by the plane 2x + y − z = 5 on x-axis.

 

Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


Two systems of rectangular axis have the same origin. If a plane cuts them at distances a, b, c and a′, b′, c′, respectively, from the origin, prove that `1/"a"^2 + 1/"b"^2 + 1/"c"^2 = 1/"a'"^2 + 1/"b'"^2 + 1/"c'"^2`


Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.


Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.


Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.


`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.


The equation of a line, which is parallel to `2hat"i" + hat"j" + 3hat"k"` and which passes through the point (5, –2, 4), is `(x - 5)/2 = (y + 2)/(-1) = (z - 4)/3`.


Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is, 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×