मराठी

ABijkAB→=3i^-j^+k^ and CDijkCD→=-3i^+2j^+4k^ are two vectors. The position vectors of the points A and C are ijk6i^+7j^+4k^ and jk-9j^+2k^, respectively. Find the position vector of a point P on the - Mathematics

Advertisements
Advertisements

प्रश्न

`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.

बेरीज

उत्तर

Position vector of A is `6hat"i" + 7hat"j" + 4hat"k"` and `vec"AB" = 3hat"i" - hat"j" + hat"k"`

So, equation of any line passing through A and parallel to `vec"AB"`

`vec"r" = (6hat"i" + 7hat"j" + 4hat"k") + lambda(3hat"i" - hat"j" + hat"k")`  .....(i)

Now any point P on `vec"AB" = (6 + 3lambda, 7 - lambda, 4 + lambda)`

Similarly, position vector of C is `-9hat"j" + 2hat"k"`

And `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"`

So, equation of any line passing through C and parallel to CD is

`vec"r" = (-9hat"j" + 2hat"k") + mu(-3hat"i" + 2hat"j" + 4hat"k")`  .....(ii)

Any point Q on `vec"CD" = (-3mu, -9 + 2mu, 2 + 4mu)`

d’ratios of PQ are `(6 + 3lambda + 3mu, 7 - lambda + 9 - 2mu, 4 + lambda - 2 - 4mu)`

⇒ `(6 + 3lambda + 3mu), (16 - lambda - 2mu), (2 + lambda - 4mu)`

Now `vec"PQ"` is ⊥ to equation (i), then

3(6 + 3λ + 3m) – 1(16 – λ – 2m) + 1(2 + λ – 4m) = 0

⇒ 18 + 9λ + 9m – 16 + λ + 2m + 2 + λ – 4m = 0

⇒ 11λ + 7m + 4 = 0  .....(iii)

`vec"PQ"` is also ⊥ to equation (ii), then

`-3(6 + 3lambda + 3mu) + 2(16 - lambda - 2mu) + 4(2 + lambda - 4mu)` = 0

⇒ – 18 – 9λ – 9m + 32 – 2λ – 4m + 8 + 4λ – 16m = 0

⇒ – 7λ – 29m + 22 = 0

⇒ 7λ + 29m – 22 = 0  ......(iv)

Solving equation (iii) and (iv) we get

77λ +   49μ +  28 = 0
77λ + 319μ – 242 = 0
(–)       (–)    (+)            
       – 270μ  + 270 = 0

∴ μ = 1

Now using μ = 1 in equation (iv) we get

7λ + 29 – 22 = 0

⇒ λ = – 1

∴ Position vector of P = [6 + 3(– 1), 7 + 1, 4 – 1]

= (3, 8, 3)

And position vector of Q = [– 3(1), –9 + 2(1), 2 + 4(1)]

= (– 3, –7, 6)

Hence, the position vectors of P = `3hat"i" + 8hat"j" + 3hat"k"` and Q = `-3hat"i" - 7hat"j" + 6hat"k"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Three Dimensional Geometry - Exercise [पृष्ठ २३७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 11 Three Dimensional Geometry
Exercise | Q 26 | पृष्ठ २३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.


Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk)  = 5`and `vecr.(3hati + hatj + hatk) = 6`


Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).

 

\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .

 


A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point

\[ \text{ 3 } \hat{i} + \hat{j} - \hat{k} .\] Find the vector and Cartesian forms of the equation of the plane.

 


Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.

 

Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.


Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).


Determine the value of λ for which the following planes are perpendicular to each other. 

 3x − 6y − 2z = 7 and 2x + y − λz = 5

 

Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.

 

Find the equation of the plane passing through (abc) and parallel to the plane  \[\vec{r} \cdot \left( \hat{i}  + \hat{j}  + \hat{k}  \right) = 2 .\]

 

Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the   yz - plane .


Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.

 

If the lines  \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of and, hence, find the equation of the plane containing these lines.


Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]

 Hence, or otherwise, deduce the length of the perpendicular.

 
 

Find the image of the point with position vector \[3 \hat{i} + \hat{j}  + 2 \hat{k} \]  in the plane  \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j}  + \hat{k}  \right) = 4 .\]  Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i}  + \hat{j}  + 2 \hat{k} .\]

 
 

Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i}  - 2 \hat{j}  + 4 \hat{k}  \right) + 5 = 0 .\]

 

Find the coordinates of the foot of the perpendicular and the perpendicular distance of the  point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.


Find the direction cosines of the unit vector perpendicular to the plane  \[\vec{r} \cdot \left( 6 \hat{i}  - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.

 

Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).

 

Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and }  \vec{r} = \vec{a} + \mu \vec{c} .\]

 

Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.

 

The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j}  + 4 \hat{k}  \right) + \lambda\left( 3 \hat{i}  - 2 \hat{j}  - \hat{k}  \right)\] and the point  \[\hat{i}  + 2 \hat{j}  + 3 \hat{k} \]  is 

 

Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.


The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.


Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.


If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.


The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:


The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×