Advertisements
Advertisements
प्रश्न
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
उत्तर
Position vector of A is `6hat"i" + 7hat"j" + 4hat"k"` and `vec"AB" = 3hat"i" - hat"j" + hat"k"`
So, equation of any line passing through A and parallel to `vec"AB"`
`vec"r" = (6hat"i" + 7hat"j" + 4hat"k") + lambda(3hat"i" - hat"j" + hat"k")` .....(i)
Now any point P on `vec"AB" = (6 + 3lambda, 7 - lambda, 4 + lambda)`
Similarly, position vector of C is `-9hat"j" + 2hat"k"`
And `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"`
So, equation of any line passing through C and parallel to CD is
`vec"r" = (-9hat"j" + 2hat"k") + mu(-3hat"i" + 2hat"j" + 4hat"k")` .....(ii)
Any point Q on `vec"CD" = (-3mu, -9 + 2mu, 2 + 4mu)`
d’ratios of PQ are `(6 + 3lambda + 3mu, 7 - lambda + 9 - 2mu, 4 + lambda - 2 - 4mu)`
⇒ `(6 + 3lambda + 3mu), (16 - lambda - 2mu), (2 + lambda - 4mu)`
Now `vec"PQ"` is ⊥ to equation (i), then
3(6 + 3λ + 3m) – 1(16 – λ – 2m) + 1(2 + λ – 4m) = 0
⇒ 18 + 9λ + 9m – 16 + λ + 2m + 2 + λ – 4m = 0
⇒ 11λ + 7m + 4 = 0 .....(iii)
`vec"PQ"` is also ⊥ to equation (ii), then
`-3(6 + 3lambda + 3mu) + 2(16 - lambda - 2mu) + 4(2 + lambda - 4mu)` = 0
⇒ – 18 – 9λ – 9m + 32 – 2λ – 4m + 8 + 4λ – 16m = 0
⇒ – 7λ – 29m + 22 = 0
⇒ 7λ + 29m – 22 = 0 ......(iv)
Solving equation (iii) and (iv) we get
77λ + 49μ + 28 = 0
77λ + 319μ – 242 = 0
(–) (–) (+)
– 270μ + 270 = 0
∴ μ = 1
Now using μ = 1 in equation (iv) we get
7λ + 29 – 22 = 0
⇒ λ = – 1
∴ Position vector of P = [6 + 3(– 1), 7 + 1, 4 – 1]
= (3, 8, 3)
And position vector of Q = [– 3(1), –9 + 2(1), 2 + 4(1)]
= (– 3, –7, 6)
Hence, the position vectors of P = `3hat"i" + 8hat"j" + 3hat"k"` and Q = `-3hat"i" - 7hat"j" + 6hat"k"`
APPEARS IN
संबंधित प्रश्न
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes `vecr = (hati - hatj + 2hatk) = 5`and `vecr.(3hati + hatj + hatk) = 6`
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
A plane passes through the point (1, −2, 5) and is perpendicular to the line joining the origin to the point
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
Find the vector equation of the plane passing through the points (1, 1, 1), (1, −1, 1) and (−7, −3, −5).
Determine the value of λ for which the following planes are perpendicular to each other.
3x − 6y − 2z = 7 and 2x + y − λz = 5
Obtain the equation of the plane passing through the point (1, −3, −2) and perpendicular to the planes x + 2y + 2z = 5 and 3x + 3y + 2z = 8.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
If the lines \[\frac{x - 1}{- 3} = \frac{y - 2}{- 2k} = \frac{z - 3}{2} \text{ and }\frac{x - 1}{k} = \frac{y - 2}{1} = \frac{z - 3}{5}\] are perpendicular, find the value of k and, hence, find the equation of the plane containing these lines.
Find the coordinates of the foot of the perpendicular drawn from the point (5, 4, 2) to the line \[\frac{x + 1}{2} = \frac{y - 3}{3} = \frac{z - 1}{- 1} .\]
Hence, or otherwise, deduce the length of the perpendicular.
Find the image of the point with position vector \[3 \hat{i} + \hat{j} + 2 \hat{k} \] in the plane \[\vec{r} \cdot \left( 2 \hat{i} - \hat{j} + \hat{k} \right) = 4 .\] Also, find the position vectors of the foot of the perpendicular and the equation of the perpendicular line through \[3 \hat{i} + \hat{j} + 2 \hat{k} .\]
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the coordinates of the foot of the perpendicular and the perpendicular distance of the point P (3, 2, 1) from the plane 2x − y + z + 1 = 0. Also, find the image of the point in the plane.
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Write the equation of a plane which is at a distance of \[5\sqrt{3}\] units from origin and the normal to which is equally inclined to coordinate axes.
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
The coordinates of the foot of the perpendicular drawn from the point (2, 5, 7) on the x-axis are given by ______.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
If the foot of perpendicular drawn from the origin to a plane is (5, – 3, – 2), then the equation of plane is `vec"r".(5hat"i" - 3hat"j" - 2hat"k")` = 38.
The point at which the normal to the curve y = `"x" + 1/"x", "x" > 0` is perpendicular to the line 3x – 4y – 7 = 0 is:
The coordinates of the foot of the perpendicular drawn from the point A(1, 0, 3) to the join of the points B(4, 7, 1) and C(3, 5, 3) are