Advertisements
Advertisements
प्रश्न
Find the vector and Cartesian equations of a plane passing through the point (1, −1, 1) and normal to the line joining the points (1, 2, 5) and (−1, 3, 1).
उत्तर
\[ \text{ Since the given plane passes through the point (1, -1, 1) and is normal to the line joiningA(1, 2, 5) and B(-1, 3, 1) } ,\]
\[ \vec{n} = \vec{AB} = \vec{OB} - \vec{OA} =\left( - \text{ i} + \text{ 3 } \hat{j} + \hat{k} \right) - \left( \hat{i} + \text{ 2 }\hat{j} + \text{ 5 }\hat{k} \right) = - \text{ 2} \hat{i} + \hat{j} - \text{ 4 }\hat{k} \]
\[\text{ We know that the vector equation of the plane passing through a point } \vec{a} \text{ and normal to } \vec{n} \text{ is }\]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[\text{ Substituting } \vec{a} = \hat{i} - \hat{j} + \hat{k} \text{ and } \vec{n} = - \text{ 2 } \hat{i}+ \hat{j} - \text{ 4 } \hat{k} , \text { we get }\]
\[ \vec{r} . \left( - \text{ 2 } \hat{i}] + \hat{j} - 4 \hat{k} \right) = \left( \hat{i} - \hat{j} + \hat{k} \right) . \left( - \text{ 2 }\hat{i} + \hat{j} - 4 \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \text{ - 2 } \hat{i} + \hat{j} - 4 \hat{k} \right) = \text{ - 2 - 1 - 4 }\]
\[ \Rightarrow \vec{r} . \left[ - \left( \text{ 2 }\hat{i} - \hat{j} + 4 \hat{k} \right) \right] = - 7\]
\[ \Rightarrow \vec{r} . \left( \text{ 2 } \hat{i} - \hat{j} + 4 \hat{k} \right) = 7\]
\[\text{ For Cartesian form, we need to substitute } \vec{r} = x \hat{i} + \text{ y } \hat{j} + z \hat{k} \text{ in the vector equation } .\]
\[\text{ Then, we get } \]
\[\left( \text{ x }\hat{i} + \text{ y }\hat{j} + z \hat{k} \right) . \left( \text{ 2 }\hat{i} - \hat{j} + 4 \hat{k} \right) = 7\]
\[ \Rightarrow 2x - y + 4z = 7\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equations of the planes that passes through three points.
(1, 1, 0), (1, 2, 1), (−2, 2, −1)
If O be the origin and the coordinates of P be (1, 2, −3), then find the equation of the plane passing through P and perpendicular to OP.
Find the vector equations of the coordinate planes.
Find the vector equation of each one of following planes.
2x − y + 2z = 8
Find the equation of the plane that bisects the line segment joining the points (1, 2, 3) and (3, 4, 5) and is at right angle to it.
Find the vector equation of a plane which is at a distance of 3 units from the origin and has \[\hat{k}\] as the unit vector normal to it.
find the equation of the plane passing through the point (1, 2, 1) and perpendicular to the line joining the points (1, 4, 2) and (2, 3, 5). Find also the perpendicular distance of the origin from this plane
Find the equation of the plane passing through the points (2, 2, 1) and (9, 3, 6) and perpendicular to the plane 2x + 6y + 6z = 1.
Find the equation of the plane that contains the point (1, −1, 2) and is perpendicular to each of the planes 2x + 3y − 2z = 5 and x + 2y − 3z = 8.
Find the equation of the plane passing through the point (−1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.
Find the equation of the plane passing through (a, b, c) and parallel to the plane \[\vec{r} \cdot \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 .\]
Find the equation of the plane through (2, 3, −4) and (1, −1, 3) and parallel to x-axis.
Find the equation of a plane passing through the points (0, 0, 0) and (3, −1, 2) and parallel to the line \[\frac{x - 4}{1} = \frac{y + 3}{- 4} = \frac{z + 1}{7} .\]
Find the vector equation of the line passing through the point (1, −1, 2) and perpendicular to the plane 2x − y + 3z − 5 = 0.
Find the equation of the plane passing through the intersection of the planes x − 2y + z = 1 and 2x + y + z = 8 and parallel to the line with direction ratios proportional to 1, 2, 1. Also, find the perpendicular distance of (1, 1, 1) from this plane
Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the yz - plane .
Find the coordinates of the point where the line through (3, −4, −5) and (2, −3, 1) crosses the plane 2x + y + z = 7.
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the coordinates of the foot of the perpendicular from the point (1, 1, 2) to the plane 2x − 2y + 4z + 5 = 0. Also, find the length of the perpendicular.
Find the image of the point (1, 3, 4) in the plane 2x − y + z + 3 = 0.
Find the length and the foot of the perpendicular from the point (1, 1, 2) to the plane \[\vec{r} \cdot \left( \hat{i} - 2 \hat{j} + 4 \hat{k} \right) + 5 = 0 .\]
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the ratio in which the plane 4x + 5y − 3z = 8 divides the line segment joining the points (−2, 1, 5) and (3, 3, 2).
Write the equation of the plane passing through (2, −1, 1) and parallel to the plane 3x + 2y −z = 7.
Write the equation of the plane containing the lines \[\vec{r} = \vec{a} + \lambda \vec{b} \text{ and } \vec{r} = \vec{a} + \mu \vec{c} .\]
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
The equation of the plane parallel to the lines x − 1 = 2y − 5 = 2z and 3x = 4y − 11 = 3z − 4 and passing through the point (2, 3, 3) is
Find a vector of magnitude 26 units normal to the plane 12x − 3y + 4z = 1.
Find the equation of the plane which bisects the line segment joining the points (−1, 2, 3) and (3, −5, 6) at right angles.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.