Advertisements
Advertisements
प्रश्न
\[\vec{n}\] is a vector of magnitude \[\sqrt{3}\] and is equally inclined to an acute angle with the coordinate axes. Find the vector and Cartesian forms of the equation of a plane which passes through (2, 1, −1) and is normal to \[\vec{n}\] .
उत्तर
\[ \text{ Let } \alpha, \beta \text{ and } \gamma \text{ be the angles made by } \vec{n} \text{ with }x, y \text{ and z-axes respectively } .\]
\[ \text{ Given that } \]
\[\alpha = \beta = \gamma\]
\[ \Rightarrow \cos \alpha = \cos \beta = \cos \gamma\]
\[ \Rightarrow l = m = n, \text{ where l, m, n are direction cosines of } \vec{n} .\]
\[\text{ But } l^2 + m^2 + n^2 = 1\]
\[ \Rightarrow l^2 + l^2 + l^2 = 1\]
\[ \Rightarrow \text{ 3 }l^2 = 1\]
\[ \Rightarrow l^2 = \frac{1}{3}\]
\[ \Rightarrow l = \frac{1}{\sqrt{3}} (\text{ Since } \alpha \text{ is acute, l = cos } \alpha >0)\]
\[\text{ Thus }, \vec{n} = \sqrt{3} \left( \frac{1}{\sqrt{3}} \hat{i} + \frac{1}{\sqrt{3}} \hat{j} + \frac{1}{\sqrt{3}} \hat{k} \right) = \hat{i} + \hat{j} + \hat{k} (\text{ Using } \vec{r} =\left| \vec{r} \left( l \hat{i} + m \hat{j} + n \hat{k} \right) \right|)\]
\[\text{ We know that the vector equation of the plane passing through a point } \vec{a} \text{ and normal to } \vec{n} \text{ is } \]
\[ \vec{r} . \vec{n} = \vec{a} . \vec{n} \]
\[\text{ Substituting } \vec{a} = 2 \hat{i} + \hat{j} - \hat{k} \text{ and } \vec{n} = \hat{ i } + \hat{j} + \hat{k} , \text{ we get } \]
\[ \vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = \left( 2 \hat{i} + \hat{j} - \hat{k} \right) . \left( \hat{i} + \hat{j} + \hat{k} \right)\]
\[ \Rightarrow \vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2 + 1 - 1\]
\[ \Rightarrow \vec{r} . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
\[\text{ For the Cartesian form, we need to substitute } \vec{r} = x \hat{i} + y \hat{j} + z \hat{k} \text{ in the vector equation } .\]
\[ \text{ Then, we get } \]
\[\left( x \hat{i} + y \hat{j} + z \hat{k} \right) . \left( \hat{i} + \hat{j} + \hat{k} \right) = 2\]
\[ \Rightarrow x + y + z = 2\]
APPEARS IN
संबंधित प्रश्न
Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector.`3hati + 5hatj - 6hatk`
Find the equations of the planes that passes through three points.
(1, 1, −1), (6, 4, −5), (−4, −2, 3)
Find the equation of the plane passing through (a, b, c) and parallel to the plane `vecr.(hati + hatj + hatk) = 2`
Find the vector equation of a plane passing through a point with position vector \[2 \hat{i} - \hat{j} + \hat{k} \] and perpendicular to the vector \[4 \hat{i} + 2 \hat{j} - 3 \hat{k} .\]
Show that the normal vector to the plane 2x + 2y + 2z = 3 is equally inclined to the coordinate axes.
Find the vector equation of the plane passing through the points P (2, 5, −3), Q (−2, −3, 5) and R (5, 3, −3).
Find the vector equation of the plane passing through points A (a, 0, 0), B (0, b, 0) and C(0, 0, c). Reduce it to normal form. If plane ABC is at a distance p from the origin, prove that \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2} .\]
Find the vector equation of the plane passing through the points \[3 \hat{i} + 4 \hat{j} + 2 \hat{k} , 2 \hat{i} - 2 \hat{j} - \hat{k} \text{ and } 7 \hat{i} + 6 \hat{k} .\]
Find the equation of a plane passing through the point (−1, −1, 2) and perpendicular to the planes 3x + 2y − 3z = 1 and 5x − 4y + z = 5.
Find the equation of the plane passing through the origin and perpendicular to each of the planes x + 2y − z = 1 and 3x − 4y + z = 5.
Find the vector equation of the line through the origin which is perpendicular to the plane \[\vec{r} \cdot \left( \hat{i} + 2 \hat{j} + 3 \hat{k} \right) = 3 .\]
Find the equation of a plane which passes through the point (3, 2, 0) and contains the line \[\frac{x - 3}{1} = \frac{y - 6}{5} = \frac{z - 4}{4}\] .
Find the coordinates of the foot of the perpendicular from the point (2, 3, 7) to the plane 3x − y − z = 7. Also, find the length of the perpendicular.
Find the direction cosines of the unit vector perpendicular to the plane \[\vec{r} \cdot \left( 6 \hat{i} - 3 \hat{j} - 2 \hat{k} \right) + 1 = 0\] passing through the origin.
Find the coordinates of the foot of the perpendicular drawn from the origin to the plane 2x − 3y + 4z − 6 = 0.
Find the length and the foot of perpendicular from the point \[\left( 1, \frac{3}{2}, 2 \right)\] to the plane \[2x - 2y + 4z + 5 = 0\] .
Find the equation of the plane that contains the point (1, –1, 2) and is perpendicular to both the planes 2x + 3y – 2z = 5 and x + 2y – 3z = 8. Hence, find the distance of point P (–2, 5, 5) from the plane obtained
Find the position vector of the foot of perpendicular and the perpendicular distance from the point P with position vector \[2 \hat{i} + 3 \hat{j} + 4 \hat{k} \] to the plane \[\vec{r} . \left( 2 \hat{i} + \hat{j} + 3 \hat{k} \right) - 26 = 0\] Also find image of P in the plane.
Find the distance of the point P (–1, –5, –10) from the point of intersection of the line joining the points A (2, –1, 2) and B (5, 3, 4) with the plane x – y + z = 5.
Write the equation of the plane passing through points (a, 0, 0), (0, b, 0) and (0, 0, c).
Write the intercepts made by the plane 2x − 3y + 4z = 12 on the coordinate axes.
Write the equation of the plane \[\vec{r} = \vec{a} + \lambda \vec{b} + \mu \vec{c}\] in scalar product form.
Find the length of the perpendicular drawn from the origin to the plane 2x − 3y + 6z + 21 = 0.
The vector equation of the plane containing the line \[\vec{r} = \left( - 2 \hat{i} - 3 \hat{j} + 4 \hat{k} \right) + \lambda\left( 3 \hat{i} - 2 \hat{j} - \hat{k} \right)\] and the point \[\hat{i} + 2 \hat{j} + 3 \hat{k} \] is
Find the vector and Cartesian equations of the plane that passes through the point (5, 2, −4) and is perpendicular to the line with direction ratios 2, 3, −1.
Find the vector equation of the plane with intercepts 3, –4 and 2 on x, y and z-axis respectively.
Find the image of the point (1, 6, 3) in the line `x/1 = (y - 1)/2 = (z - 2)/3`.
Find the equation of a plane which bisects perpendicularly the line joining the points A(2, 3, 4) and B(4, 5, 8) at right angles.
Find the foot of perpendicular from the point (2, 3, –8) to the line `(4 - x)/2 = y/6 = (1 - z)/3`. Also, find the perpendicular distance from the given point to the line.
Find the length and the foot of perpendicular from the point `(1, 3/2, 2)` to the plane 2x – 2y + 4z + 5 = 0.
Find the equation of the plane through the points (2, 1, –1) and (–1, 3, 4), and perpendicular to the plane x – 2y + 4z = 10.
Show that the points `(hat"i" - hat"j" + 3hat"k")` and `3(hat"i" + hat"j" + hat"k")` are equidistant from the plane `vec"r" * (5hat"i" + 2hat"j" - 7hat"k") + 9` = 0 and lies on opposite side of it.
`vec"AB" = 3hat"i" - hat"j" + hat"k"` and `vec"CD" = -3hat"i" + 2hat"j" + 4hat"k"` are two vectors. The position vectors of the points A and C are `6hat"i" + 7hat"j" + 4hat"k"` and `-9hat"j" + 2hat"k"`, respectively. Find the position vector of a point P on the line AB and a point Q on the line Cd such that `vec"PQ"` is perpendicular to `vec"AB"` and `vec"CD"` both.
Let A be the foot of the perpendicular from focus P of hyperbola `x^2/a^2 - y^2/b^2 = 1` on the line bx – ay = 0 and let C be the centre of hyperbola. Then the area of the rectangle whose sides are equal to that of PA and CA is,
The method of splitting a single force into two perpendicular components along x-axis and y-axis is called as ______.